Stable commutator length in graphs of groups

Lvzhou Chen

NCNGT May 27, 2020

Stable commutator length (scl)

Definition

Space X, null-homologous loop γ . Then γ bounds a surface.

Admissible surfaces (S, f)

$$\operatorname{scl}_X(\gamma) := \inf_{(S,f)} \frac{-\chi^-(S)}{2 \cdot n}$$

Multiplicative!

$$\chi^{-}(S) = \chi(S - D^2)$$
's S^2 's).

$$\mathrm{scl}_G(g) = \mathrm{scl}_X(\gamma)$$

Stable commutator length (scl)

Definition

Space X, null-homologous loop γ . Then γ bounds a surface.

Admissible surfaces (S, f)

$$\operatorname{scl}_X(\gamma) := \inf_{(S,f)} \frac{-\chi^-(S)}{2 \cdot n}$$

Multiplicative!

$$\chi^{-}(S) = \chi(S - D^2)$$
's S^2 's).

$$\mathrm{scl}_G(g) = \mathrm{scl}_X(\gamma)$$

$$\operatorname{scl}_G([x,y]) \le 1/2.$$

Space of surfaces has little structure.

Challenge: prove lower bounds of scl or compute it.

Properties

- algebraic: only depends on $G = \pi_1(X)$, and has a group-theoretic definition using commutators.
- non-increasing: $\forall \varphi : G \to H$ homomorphism, $\mathrm{scl}_G(g) \geq \mathrm{scl}_H(\varphi(g))$.
- characteristic: $\forall \varphi \in \operatorname{Aut}(G), \operatorname{scl}_G(\varphi(g)) = \operatorname{scl}_G(g).$
- dual to quasimorphisms, related to $H_b^2(G)$.
- $\mathrm{scl}_G \equiv 0$ if G is amenable or a higher rank irreducible lattice.
- non-trivial on word-hyperbolic groups, mapping class groups, etc.

Gromov–Thurston norm

Gromov Norm

 $A \subset X$ subspace, $\alpha \in H_2(X, A; \mathbb{Z})$. $(S, \partial S) \to (X, A)$ represents α , the *Gromov norm*

$$\|\alpha\| := \inf_{[S]=n\alpha} \frac{-2\chi^{-}(S)}{n}.$$

When
$$(X, A) = (M^3, \partial M)$$
,

$$\|\alpha\|_{Th} := \inf_{[S]=\alpha} -\chi^{-}(S) = \frac{1}{2} \|\alpha\|.$$

embedded

Remove "embedded" by Gabai-Thurston

Example

$$K \subset S^3$$
 knot, $X = S^3 \setminus N(K)$, $A = \partial X$, $\gamma = K = \partial \Sigma$, then there is a unique $\alpha \in H_2(X, A)$ with $\partial \alpha = [\gamma]$. We have

$$\mathrm{scl}_{G}(\gamma) = \frac{1}{4} \|\alpha\| = \frac{1}{2} \|\alpha\|_{Th} = g(K) - \frac{1}{2} \in \mathbb{Q}$$

extremal

$$0 = H_2(X) \longrightarrow H_2(X, A) \longrightarrow H_1(A) \longrightarrow H_1(X)$$

Extremal surfaces

Definition

An admissible surface (S, f) is extremal for g if

$$\operatorname{scl}_G(g) = \inf_{(S,f)} \frac{-\chi^-(S)}{2 \cdot n}$$

finite cover Note: extremal \longrightarrow extremal Existence \Longrightarrow $\mathrm{scl}_G(g) \in \mathbb{Q}$

Proposition

If (S, f) is extremal then $f_* : \pi_1(S) \to G$ is injective.

Proof: Compression+LERF

Computations and rationality

Theorem (Calegari'08)

 $G = F_n$, there is a linear programming algorithm to compute $\mathrm{scl}_G(g)$ and produces extremal surfaces (in particular $\mathrm{scl}_G(g) \in \mathbb{Q}$).

Gromov's Question

Does every one-ended word-hyperbolic group G contain a $\pi_1(S)$?

• Kahn-Marković'09: yes if $G = \pi_1(M)$, M^3 closed hyperbolic.

Application (surface subgroups)

Calegari'08: $g \in [F_n, F_n], G = DF_n(g)$ has a surface subgroup.

Main theorem

Theorem (C.'19)

G a graph of groups, such that for each vertex group G_v $_{\text{f.i}}$ $(1) \operatorname{scl}_{G_v} \equiv 0$; and (e.g. G_v amenable, $\operatorname{SL}_3\mathbb{Z}$) $H, K \leq G, H \cap K \leq H, K$ $(2) \operatorname{Im}(G_e \to G_v)$ are central and mutually commensurable; Then there is a linear programming algorithm to compute $\operatorname{scl}_G(g)$, which is rational.

Examples

$$G = \operatorname{BS}(M, L) := \langle a, t \mid a^M = ta^L t^{-1} \rangle; \quad G_v = \mathbb{Z}$$

$$(\operatorname{Clay-Forester-Louwsma'13}): \quad G_e = \mathbb{Z}$$

$$(\operatorname{C.'16}) \ G = *_{\lambda} G_{\lambda} \text{ with } \operatorname{scl}_{G_{\lambda}} \equiv 0;$$

$$(\operatorname{Susse'13}) \ G = \mathbb{Z}^m *_{\mathbb{Z}^k} \mathbb{Z}^n.$$

Proof ideas

• Step 1: Obtain simple normal form of (relative) admissible surfaces.

Each is made of simple "Lego" pieces.

• Step 2: Use linear programming to find the best combination of "Lego" pieces.

Relative admissible surfaces

• relative admissible surface: allow extra boundary curves in vertex spaces.

• Lemma:
$$\operatorname{scl}_G(g) = \inf_{\substack{(S,f) \\ \text{adm}}} \frac{-\chi^-(S)}{2 \cdot n} \ge \inf_{\substack{(S,f) \\ \text{rel adm}}} \frac{-\chi^-(S)}{2 \cdot n}.$$

"=" if $\operatorname{scl}_{G_v} \equiv 0$

Simple normal form

- \bullet Edge spaces cut S into subsurfaces supported in vertex spaces.
- Simplify each component into a disk or annuli.

Simple normal form

 \bullet Edge spaces cut S into subsurfaces supported in vertex spaces.

• Simplify each component into a disk or annuli.

• Disk iff winding number = 0.

Linear programming

minimize $\frac{-\chi(S)}{2n} \iff \text{maximize } \# \text{disk pieces}/n$

max: $\sum x_D$

subj: gluing & normalizing conditions

Dimension reduction (BS case)

Fix a suitable $D \in \mathbb{Z}_+$.

- A piece is disk-like if its winding number is divisible by D.
- $\widehat{\chi}(S) = \chi(S) + \#\{\text{disk-like but not disk}\}.$

$$\implies \inf_{\substack{S \text{rel adm}}} \frac{-\widehat{\chi}(S)}{2n(S)} \le \inf_{\substack{S \text{rel adm}}} \frac{-\chi(S)}{2n(S)} = \operatorname{scl}(\gamma).$$

Key Lemma: There is a suitable $D = D(\gamma)$ such that "=" holds: for any relative admissible S and any $\epsilon > 0$, there is another \widehat{S} satisfying

$$\frac{-\chi(\widehat{S})}{2n(\widehat{S})} < \frac{-\widehat{\chi}(S)}{2n(S)} + \epsilon.$$

