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Abstract. A group has normal rank (or weight) greater than one if no single element
normally generates the group. The Wiegold problem from 1976 asks about the existence
of a finitely generated perfect group of normal rank greater than one. We show that
any free product of nontrivial left-orderable groups has normal rank greater than one.
This solves the Wiegold problem by taking free products of finitely generated perfect
left-orderable groups, a plethora of which are known to exist. We obtain our estimate
of normal rank by a topological argument, proving a type of spectral gap property for
an unsigned version of stable commutator length. A key ingredient in the proof is an
intricate new construction of a family of left-orders on free products of two left-orderable
groups.

1. Introduction

A fundamental concept in group theory is the normal rank (or weight) of a group, which
is the smallest cardinality of a set of elements that normally generates the group. One
obtains a lower bound by counting the number of factors in the abelianization, viewed as
a direct sum. Providing other estimates from below has proved to be notoriously difficult.
Such estimates are also of interest in 3-manifold topology, as the normal rank of π1(M) is
a lower bound of the so-called Dehn surgery number of M3; see Section 1.1.

A longstanding open problem posed by Wiegold in 1976 (Problem FP14 in [BMS02],
Problem 5.52 in [KM23]), asks if there exist finitely generated perfect groups with normal
rank greater than one, for which we give a positive answer:

Theorem A. There exist finitely generated (even finitely presented) perfect groups that
have normal rank greater than 1.

There has been remarkably little progress on the problem since it was posed, besides
Wiegold’s elementary proof that finite perfect groups have normal rank 1. There are many
candidates of such examples, such as free products of finitely generated torsion-free perfect
groups. However, proving the lower bound on the normal rank remained intractable.

We prove the desired bound for free products of left-orderable groups, and thus provide
a family of examples for Theorem A. A group G is left-orderable if it admits a total or-
der < such that f < g implies that hf < hg for all f, g, h ∈ G. For countable groups,
this is equivalent to admitting an embedding in Homeo+(R) [DNR14]. The landscape of
left-orderable groups is vast and includes free and surface groups (more generally, locally
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indicable groups [BH72]), braid groups, and virtually the fundamental groups of closed hy-
perbolic 3-manifolds [Ago13]. Finitely generated perfect left-orderable groups are plentiful
with examples going back to the 1980s [GS87]. See [DNR14] for a comprehensive reference
on left-orderable groups.

Here is the general result we prove, where 〈〈w〉〉 is the smallest normal subgroup of G
containing w.

Theorem B. Any free product G = A ? B of nontrivial left-orderable groups A and B
has normal rank greater than 1. More precisely, for any w ∈ G not conjugate into A, the
natural map A ↪→ A ? B induces an injection A ↪→ (A ? B)/〈〈w〉〉.

We remark that the same estimate of normal rank holds for free products of groups,
where each free factor admits a nontrivial left-orderable quotient.

Theorem A is a corollary of Theorem B by taking A and B to be finitely generated
perfect left-orderable groups. Some prominent examples of finitely presentable perfect left-
orderable groups include: the commutator subgroup of the braid group Bn for n ≥ 5
[Deh00, DNR14], central extensions of Thompson’s group T [GS87] and the (2, 3, 7)-triangle
group [DNR14], and Higman’s group [RT19]. The second author with Hyde constructed the
first examples of finitely generated simple left-orderable groups [HL19], and even finitely
presentable ones [HL25]. The former family contains continuum many groups (up to iso-
morphism).

1.1. Connections to other problems and results. We now explain how our results
connect to other problems, and compare them with previously known results. The method
of proof for Theorem B will be explained in Section 2.

Most known approaches towards the Wiegold problem involve showing that a free prod-
uct G = ?i∈IAi of nontrivial groups Ai has normal rank greater than 1, under suitable
assumptions.

For |I| ≥ 3, an unsolved conjecture of Cameron Gordon [Gor83, Conjecture 9.5] predicts
that such a free product always has normal rank greater than 1. When the factors are finite
cyclic groups, this is the Scott–Wiegold conjecture, confirmed by James Howie [How02]. It
seems tempting to make this work for a free product of three (even finite) perfect groups,
but no one has succeeded.

When |I| = 2, it is well-known that torsion can enable a free product G = A?B to have
normal rank 1. For example, G/〈〈w〉〉 is trivial for w = ab in G = (Z/2) ? (Z/3), where a
and b are generators of Z/2 and Z/3 respectively. The same argument works when A,B are
simple groups containing torsion elements of coprime orders. So some assumptions should
be imposed on A and B for G to have normal rank greater than 1.

Since the early 1980s, Theorem B was known to be true under the much stronger as-
sumption that each free factor is locally indicable, meaning that every nontrivial finitely
generated subgroup surjects onto Z; see the independent work of Brodskĭı [Bro84], Howie
[How81] and Short [Sho83]. However, finitely generated locally indicable groups can never
be perfect. Theorem B is also suspected to hold under the weaker assumption that each
free factor is torsion-free; see Kirby’s (1970s) problem list [Kir78, Problem 66] contributed
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by Freedman. Such generalizations are challenging due to the lack of structures. Local
indicability implies left-orderability, which in turn implies torsion-freeness.

If one takes B = Z in Theorem B, it becomes easier to show that G has normal rank
greater than one, but there is a surjection p : G = A ? Z → Z, and so G is not perfect.
The Howie (or Kervaire–Laudenbach) conjecture [How81] asserts that Theorem B holds for
G = A?Z with any nontrivial group A whenever p(w) 6= 0. This has been confirmed when
A is residually finite (by Gerstenhaber–Rothaus [GR62]), hyperlinear (by Pestov [Pes08]),
or torsion-free1 (by Klyachko [Kly93] and a recent new proof by the first author [Che25]).
Actually, if A is torsion-free, the Levin conjecture [Lev62] asserts that the result holds with
the weaker assumption that w is not conjugate into A. Theorem B confirms this for A
left-orderable since B = Z.

Considerable interest in the notion of normal rank comes from 3-manifold topology. The
Lickorish–Wallace theorem [Wal60, Lic62] shows that any closed, orientable, connected 3-
manifold M is the result of a Dehn surgery on some n-component link L in S3, and the
minimal number n, called the Dehn surgery number, has been considered as a complexity
of M . There are many articles studying this [Auc97, HKL16, HL18, SZ22], but it is very
difficult to give lower bounds. In fact, no example of Dehn surgery number greater than
two is known; see the recent work [LP24] for a more detailed summary of the relevant work.
The normal rank of π1(M) is a natural lower bound of the Dehn surgery number, since
the fundamental group of S3 \ L has normal rank at most n, and so is the fundamental
group of M if it is obtained from a Dehn surgery on S3 \ L since π1(M) is a quotient of
π1(S

3 \ L). In this view, the Gordon conjecture [Gor83, Conjecture 9.5] is a generalization
of the three-summand conjecture: A connected sum of three 3-manifolds not homeomorphic
to S3 must have Dehn surgery number greater than 1. This is in turn related to the cabling
conjecture [GAnS86].

It is natural to ask if the following generalization of Theorem B holds.

Question 1.1. Let G be a free product of n nontrivial left-orderable groups. Is the normal
rank of G at least n?

A positive answer would imply that the connected sum of n 3-manifolds with nontriv-
ial left-orderable fundamental groups must have Dehn surgery number at least n. Left-
orderability of fundamental groups of 3-manifolds is also well-studied in the context of the
L-space conjecture [BGW13].

There have been some attempts to approach the Wiegold problem from other directions,
which still remain mysterious. In the article [OT13], Osin and Thom provide a conjectural
connection between the notion of normal rank of a countable torsion-free group and its
first l2-betti number, motivated by the Wiegold problem. In [MOT12], Monod, Ozawa
and Thom formulate a version of the Wiegold problem for irng ’s which are rings that are
possibly non-unital, demonstrating that a solution in this setting would lead to a solution
of the original Wiegold problem. Both approaches remain unsolved.

1under the stronger assumption p(w) = ±1
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2. The structure of the proof

We sketch the proof of Theorem B and introduce the two main ingredients.
The notion of right-orderability is defined in the same way as left-orderability, except

that the total order is required to be invariant under right multiplication instead. A group
admits a left-order if and only if it admits a right-order. In this article, all actions will be
right actions, so we shall use the notion of right-orderability in the rest of this paper.

Let A,B be right-orderable groups and G = A ? B. Up to conjugation, we express w as
a cyclically reduced word:

w = a1b1 · · · anbn ∈ G ai ∈ A \ {id}, bi ∈ B \ {id}.

Suppose some a ∈ A \ {id} lies in the subgroup 〈〈w〉〉 normally generated by w, we get
an equation of the form:

a = (g1w
n1g−11 )(g2w

n2g−12 ) · · · (gkwnkg−1k ),

where k ∈ Z+, each gi ∈ G and ni ∈ Z \ {0} for all 1 ≤ i ≤ k.
This gives rise to a surface map f : S → X, where X is a K(G, 1), S is a sphere with k+1

boundary components, and f takes the boundary components to loops in X representing
the conjugacy classes of a,wn1 , · · · , wnk respectively; see Figure 2. We aim to show that
such a surface map is too simple to exist in the sense that the complexity of the surface,
measured by −χ(S) = k− 1, is strictly less than the complexity of the boundary, measured
by
∑

i |ni| (which is at least k).
We show that the inequality should go the other way in Theorem C below, for a more

general class of surfaces (allowing genus and so on), which we call w-admissible surfaces;
see Definition 3.1. For such a surface S, we measure the complexity of the boundary by
a notion of degree deg(S), which is an unsigned count of the number of copies of w±1
on the boundary. We ask the surface to be boundary-incompressible (Definition 3.3) to
ensure a genuine count of deg(S). The surface S above arising from equations fits into
the definition, where deg(S) =

∑
i |ni|, and it is boundary-incompressible if we take an

equation of minimal length k; see Example 3.5. Thus the inequality we show in Theorem C
below gives a contradiction.

Theorem C. Let G = A ? B be a free product of right-orderable groups A and B, and let
w be an element of G not conjugate into A or B. Then for any boundary-incompressible
w-admissible surface S without 2-sphere or disk components, we have

−χ(S) ≥ deg(S).

If we express w as a cyclically reduced word a1b1 · · · anbn, Theorem C holds under
the weaker assumption that the finitely generated subgroups A′ = 〈a1, . . . , an〉 and B′ =
〈b1, . . . , bn〉 are right-orderable. Similarly for Theorem D below; see Theorem 4.1.

A similar result in the context of HNN extensions was recently shown by the first author
[Che25, Theorem A] to give a new proof of the Klyachko theorem [Kly93]. These are
inspired by the spectral gap property in the context of stable commutator length [DH91,
Che18, CH19, Heu19], where the degree is the signed count |

∑
i ni|. In that context,
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the analog of Theorem C holds under the weaker torsion-freeness assumption on the free
factors [Che18]. Here we are interested in the stronger inequalities involving the unsigned
degree, for which we impose stronger assumptions. Similar unsigned or unoriented variants
of stable commutator length has been studied by Duncan–Howie, Larsen Louder, Doron
Puder, and Henry Wilton [DH91, LW24, Wil18, Wil24, PSEWS25], which have been useful
in understanding surface subgroups, one-relator groups, and more.

To prove Theorem C, we have two main ingredients, one topological and the other dy-
namical. First, we use a topological argument that gives the desired estimate of the Euler
characteristic (Theorem D below), assuming the existence of a combinatorial labeling. Such
a labeling can be derived from a dynamical condition that we call relative stacking (Defi-
nition 2.1), generalizing the notion of stacking from [LW17].

Theorem D. For any free product G = A ? B and w ∈ A ? B expressed as a cyclically
reduced word. If there is a relative stacking of w, then for any boundary-incompressible
w-admissible surface S without sphere or disk components, we have

−χ(S) ≥ deg(S).

Here is the key notion of relative stacking.

Definition 2.1 (Relative stacking). Consider an action σ : G = A?B → Homeo+(R), not
necessarily faithful. For a cyclically reduced word w = a1b1 · · · anbn with ai ∈ A \ {id}, bi ∈
B \ {id}, the trajectory of some x ∈ R under w is the multiset of points:

Ω(w, x) = {x · σ(a1b1 . . . aibi) | 1 ≤ i ≤ n} ∪ {x · σ(a1b1 . . . ai) | 1 ≤ i ≤ n},
which are the images of x under the action of the nonempty prefixes of w.

We say the trajectory of x under w is stable if:
(1) Each element in Ω(w, x) occurs exactly once.
(2) x · σ(w) = x.

A relative stacking of w is a right action σ of A ? B on R by orientation-preserving
homeomorphisms of the real line and a point x ∈ R, such that Ω(w, x) is stable.

The second main input is to show the existence of relative stacking. It only works when
w is not a proper power, but Theorem C is easier when w is a proper power. In fact, for the
purposes of our main Theorem B, we only need to consider w which are not proper powers
since 〈〈wn〉〉 ⊂ 〈〈w〉〉.

Theorem E. Let G = A ? B be a free product of countable right-orderable groups A and
B. For any w ∈ A ? B cyclically reduced of length at least 2, a relative stacking of w exists
if and only if w is not a proper power.

To prove Theorem E, we provide a method to solve certain equations and inequations
over the group where the variables are a G-action on R and a chosen point in R. This is
done using systematic blow-ups of fixed group actions on R, reducing it to the following
problem: Given any nonempty proper prefix u of w, find an action σ : A?B → Homeo+(R)
and x ∈ R that satisfies x · σ(w) = x and x · σ(u) 6= x. For this, we build an action σ with
a closed interval I such that:
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(1) I · σ(w) ⊆ I.
(2) I · σ(u) ∩ I = ∅.

Such an action is built by developing a method that we call dynamical arrangements, which
are careful combinatorial encodings of actions of A ? B on R. This finishes the proof since
the first item ensures the existence of a point x ∈ I fixed by σ(w) using the intermediate
value theorem, and the second item ensures the σ(u) has no fixed point in I.

2.1. Organization of the paper. We give the topological backgrounds on w-admissible
surfaces in Section 3 and then prove Theorem D in Section 4. Then we show the existence of
relative stacking in Section 5. Finally we give the formal proofs of main results in Section 6.

3. Admissible surfaces

In this section, we define the necessary terminology about admissible surfaces and intro-
duce the basic facts. Most of this is parallel to what is developed in the previous work of
the first author [Che25], but here we focus on free products instead of HNN extensions. We
include all details for completeness.

Given a group G and a collection of proper subgroups {Ai}i∈I , where I could be empty,
let X be a connected topological space with π1(X) = G. The only case of interest in this
paper is when G = ?i∈IAi with |I| = 2.

Definition 3.1 (w-admissible). Given w ∈ G, a map f : S → X from a compact oriented
surface S is called a w-admissible surface in G (or X) relative to {Ai}i∈I if:

(1) The image of each boundary component of S
• either represents the conjugacy class of wn for some n ∈ Z \ {0} (we refer to
the union of components of this kind as the w-boundary),
• or represents a conjugacy class in G that intersects some Ai nontrivially (we
refer to a boundary component of the this kind as an Ai-boundary).

(2) We require that the w-boundary is non-empty.
The Ai-boundary can be empty, but it is important to allow its existence (see Example

3.5). See the left of Figure 1 for an illustration.
We denote a (relative) w-admissible surface by the pair (f, S), but we will often simply

denote it as S unless we would like to emphasize the map f .
For each w-boundary component representing wn, we define its degree to be |n|. Then

we define the degree of S as the sum of degrees over all w-boundary components and denote
it as deg(S). For instance, the surface S in Figure 1 has degree k +m+ n.

Remark 3.2. This is analogous to the definition of admissible surfaces relative to a collection
of subgroups in the context of relative stable commutator length; see [Che20, Definition
2.8], and also [Cal09, Notation 2.5] for the absolute version. However, in that context, the
degree is counted with signs, namely, a boundary component representing wn with n < 0
contributes −n to the degree. The unsigned version of degree here is an upper bound of
the absolute value of the signed version.
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Figure 1. On the left is a w-admissible surface (f, S) into a space X
with π1(X) = A ? B, where S has two boundary components represent-
ing b, b′ ∈ B, one boundary component representing a ∈ A, and three w-
boundary components representing wk, wn, w−m for some k,m, n ∈ Z+. The
subsurface P witnesses its boundary-compressibility, and S′ = S \ P on the
right is the simplified w-admissible surface, whose boundary representing
wn−m (with the orientation induced from S′) needs to be further capped off
by a disk if m = n.

To avoid a dummy count of degree, we will often require w-admissible surfaces to be
boundary-incompressible, following [Che25, Definition 2.4].

Definition 3.3 (boundary-incompressibility). A w-admissible surface (f, S) relative to
{Ai}i∈I is boundary-compressible if there is an embedded subsurface P ⊂ S homeomorphic
to a pair of pants, such that two boundary components of P are on the w-boundary of
S and represent the conjugacy class of wn and w−m for some m,n ∈ Z+, and the third
boundary component of P is in the interior of S and, with the induced orientation from P ,
represents the conjugacy class of wm−n under the map f ; see the left of Figure 1.

We say (f, S) is boundary-incompressible if there is no such P .

Remark 3.4. One can compress a boundary-compressible w-admissible surface S as follows
to get a simpler surface that is either w-admissible again or has no w-boundary left; see
Figure 1 for an illustration. Let S′ be the closure of S\P equipped with the restriction of f .
This “merges” the two w-boundary components of S representing wn and w−m into one that
represents the conjugacy class of wn−m (with the induced orientation from S′). If m 6= n,
then (f, S′) is a w-admissible surface already. If m = n, then the new boundary is null-
homotopic inX and thus bounds a disk g : D → X. We use this to cap off S′ to get a surface
S′′ := S′ ∪D with a well-defined map f ′′ using f and g, so that (f ′′, S′′) is a w-admissible
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Figure 2. A w-admissible surface S corresponding to an equation of the
form (3.1) with k = 4.

surface except that possibly there is no w-boundary left. The surfaces S′ and S′′ are simpler
in the sense that −χ(S′) = −χ(S)− 1 < −χ(S) and −χ(S′′) = −χ(S′)− 1 < −χ(S).

The pair of pants P in Definition 3.3 shrinks down to a neighborhood of the union of
the two w-boundary components C,C ′ with a proper arc γ ⊂ S connecting them. One can
characterize boundary-incompressibility in terms of arcs (like γ); compare to the second
part of [PSEWS25, Definition 3.1].

Here is the key example relating w-admissible surfaces to equations in a group.

Example 3.5. Let a 6= id ∈ A, which we treat as an element in G = A ?B. Let w ∈ G be
an element not conjugate into A or B. Let 〈〈w〉〉 be the subgroup normally generated by w,
then a ∈ 〈〈w〉〉 if and only if one can express a in an equation of the form below:

(3.1) a = (g1w
n1g−11 )(g2w

n2g−12 ) · · · (gkwnkg−1k ),

where k ∈ Z+, each gi ∈ G and ni 6= 0 ∈ Z for all 1 ≤ i ≤ k.
Each such equation corresponds to a surface map f : S → X, where S is a sphere with

k+1 boundary components, where one boundary component represents the conjugacy class
of a, and the remaining k components represent wni for 1 ≤ i ≤ k respectively; see Figure 2.
This makes (f, S) a w-admissible surface relative to {A,B} (or just {A}), whose degree is∑

i |ni|.
If S is boundary-compressible, then the compression as in Remark 3.4 yields a w-

admissible surface S′ with fewer w-boundary components, which corresponds to an equation
with strictly smaller k. Since a is nontrivial and the corresponding component in S does
not change in the process, we cannot run out of w-boundary components. It follows that,
if we consider an equation for a of the form (3.1) with minimal k, then the corresponding
w-admissible surface S must be boundary-incompressible. These are the surfaces that we
will apply our spectral gap Theorem C to.
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We measure the complexity of a (w-admissible) surface S by the negative modified Euler
characteristic −χ−(S) defined as follows: For each connected component Σ of S, define
χ−(Σ) := min(χ(Σ), 0); then define χ−(S) as the sum of χ−(Σ) over all components of
S. Equivalently, χ−(S) is the Euler characteristic of S after removing all disk or sphere
components. For our purposes, we can restrict our attention to w-admissible surfaces
where each connected component contains some w-boundary component, so there is no
disk (if w has infinite order) or sphere component, and hence the complexity is simply
−χ−(S) = −χ(S).

3.1. A normal form. In this subsection, we focus on the case of w ∈ G = A ? B and
introduce a decomposition of any w-admissible surface into a simple normal form, after
possibly simplifying the surface first. This allows us to put specific structures on the
surface to aid our Euler characteristic estimate.

The (simple) normal form we define below is similar to the one used in [Che25], both
should generalize to graphs of groups/spaces and are adapted from the (simple) normal
form in [Che20] of admissible surfaces in the context of stable commutator length.

Since we will focus on the case of a free product G = A?B and w ∈ G not conjugate into
A or B, it is understood that the w-admissible surfaces we consider are relative to {A,B}.

Let XA and XB be pointed K(A, 1) and K(B, 1) spaces respectively. Let X = XA t
[−1, 1] tXB/ ∼, where the equivalence relation ∼ glues −1 (resp. 1) to the base point of
XA (resp. XB). Then X is a K(G, 1) space, which contains a point ? corresponding to the
midpoint 0, and we treat it as the base point of X. Let X̂A := XA ∪ [−1, 0] ⊂ X, which is
a copy of K(A, 1) based at ?, and similarly let X̂B := XB ∪ [0, 1] ⊂ X; see Figure 3.

Fix any element w ∈ G that is not conjugate into A or B. Up to conjugation, we assume
that w is written as a cyclically reduced word w = a1b1 · · · anbn for some n ∈ Z+, where
each ai 6= id ∈ A and bi 6= id ∈ B. Denote the word length of w as |w| := 2n. Note that
any such w has infinite order.

We can represent w as a map fw : S1
w → X from an oriented circle S1

w, so that

Jw := f−1w (?) ⊂ S1
w

consists of |w| points, which we refer to as the junctures. The junctures cut S1
w into |w| arcs

α1, β1, . . . , αn, βn in cyclic order, where each αi (resp. βi) is mapped by fw to a loop in X
supported on X̂A (resp. X̂B) based at ? representing ai ∈ A (resp. bi ∈ B); see Figure 3.

For any w-admissible surface (f, S), up to homotopy, we assume that the restriction of f
to each w-boundary component C factors as C ∼= S1 p→ S1

w
fw→ X, where p is a covering map

whose degree d is the degree of the component C. Then p pulls back the set of junctures
Jw to a set JC := p−1(Jw) of d|w| points on C, which we also refer to as junctures; see
Figure 3. These junctures cut C into d|w| segments, each is mapped to some α±1i or β±1i
under the map p, where the sign is +1 if and only if C represents a positive power of w.

We may also assume up to a homotopy that each A-boundary or B-boundary of S has
image under f away from ?.

Since ? is locally a submanifold of codimension one in X, and f |∂S is already transverse
to ?, we may assume that f is transverse to ?, up to a homotopy of f rel ∂S. Then by
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Figure 3. The set Jw = f−1w (?) on the circle S1
w. The set of disjoint proper

arcs F = f−1(XC) is a set of embedded disjoint proper arcs in a reduced
w-admissible surface S. The w-boundary component C has a cover map p
to S1

w that pulls back Jw to JC .

transversality, F := f−1(?) is a properly embedded 1-submanifold of S. That is, F is a
finite disjoint union of embedded proper arcs and embedded loops.

Definition 3.6 (reduced). We say a w-admissible surface S is reduced if each connected
component of S intersects the w-boundary, and F = f−1(?) contains no loop, that is, F is
a finite disjoint union of embedded proper arcs; see Figure 3. In particular, there are no
closed or disk components since w has infinite order, so χ−(S) = χ(S) if S is reduced.

We can always simplify S to a reduced one by the next lemma.

Lemma 3.7. If (f, S) is a w-admissible surface in X, then there is a w-admissible surface
(f ′, S′) with deg(S′) = deg(S) and −χ−(S′) ≤ −χ−(S) such that S′ is reduced. Moreover,
(f ′, S′) is boundary-incompressible if (f, S) is.

Proof. First we discard components of S that are disjoint from the w-boundary. This
preserves deg(S) and boundary-incompressibility, and it does not increase −χ−(S).

Now assume each component of S witnesses the w-boundary. Then S has no closed or
disk components as w has infinite order, so χ−(S) = χ(S).

Suppose there is a loop L ⊂ F , which is embedded in S. Let c : D → X be the constant
map taking a closed disk D to ? ∈ X. Cutting S along L creates two new boundary
components, and we close them up by gluing in two copies of D along the boundary.
Denote the new surface by S′. Note that f |L agrees with c|∂D, so we obtain a well-defined
map f ′ : S′ → X.
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Then (f ′, S′) is w-admissible with deg(S′) = deg(S) since boundary components of S′
exactly correspond to those of S, on which the map f ′ agrees with f .

Denote by Σ the component of S containing L, which becomes Σ′ ⊂ S′, which is either
one or two components of S′ depending on whether L separates Σ. Note that −χ(Σ′) =
−χ(Σ) − 2 by Mayer–Vietoris. By our assumption above, Σ is not closed, so L cannot
bound disks on both sides.

(1) If L bounds a disk on one side, the process above creates a sphere component,
and the other component is homeomorphic to Σ. In this case we delete the sphere
component and redefine S′ to be the remaining surface (Figure 4), in which case
χ−(Σ′) = χ(Σ′) = χ(Σ) = χ−(Σ).

(2) Otherwise, this does not create any sphere component and can create at most two
disk components2, so χ−(Σ′) ≥ χ(Σ′)− 2. Thus

−χ−(Σ′) ≤ −χ(Σ′) + 2 = −χ(Σ) = −χ−(Σ).

Hence in any case we have −χ−(S′) ≤ −χ−(S). For each component of Σ′, homotope f ′
slightly to push f ′(D) away from ? to eliminate the loop L from F ′ = f ′−1(?) so that F ′
has fewer loops than F .

It remains to see that (f ′, S′) inherits the boundary-incompressibility of (f, S). Suppose
(f ′, S′) is boundary-compressible due to an embedded pair of pants P . Denote the boundary
components of P as L1, L2 and L3, where L1 and L2 are w-boundary components of S′
(coming from S) and L3 is in the interior of S′. Up to an isotopy, we may shrink P to a
tubular neighborhood of L1 ∪ L2 ∪ γ for some proper embedded arc γ connecting L1 and
L2. We can homotope γ away from the new disks in the construction of S′, which does
not change the homotopy class of f ′(∂L3); see Figure 4. So we may assume that P is
disjoint from the new disks and thus correspond to a pair of pants in S that witnesses the
boundary-compressibility of (f, S).

The process above strictly decreases the number of loop components in F , so by repeating
the whole process above finitely many times we arrive at a desired reduced (f ′, S′). �

Now assume that (f, S) is already a reduced w-admissible surface. In particular, F =
f−1(?) is a finite disjoint union of proper arcs, whose endpoints are necessarily junctures
on the w-boundary of S. Note that any juncture is contained in exactly one arc in F by
disjointness. Then F cuts S into two closed (as subsets) possibly disconnected subsurfaces
SA := f−1(X̂A) and SB := f−1(X̂B) so that S = SA ∪F SB; see the left of Figure 5.

There are two possible kinds of boundary components of SA:
(1) A-boundary components, exactly corresponding to the A-boundary components of

S (which are disjoint from F ); see the orange loops on the right of Figure 5; and
(2) polygonal boundary components, each of which has an even number of sides, alter-

nating between segments on some w-boundary of S and proper arcs in F , the latter
are called turns; see the red and blue arcs on the right of Figure 5.

2Actually, it is also easy to show that this does not occur.
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S

L1

L2

L

P

S′

L1

L2

L
D

γ

P

Figure 4. Compress a w-admissible surface S along a loop L ⊂ F to obtain
S′. Push the proper arc γ away from the disk D bounding L in S′ to isotope
the pair of pants P ' L1 ∪ L2 ∪ γ so that it “lifts” to S.

S

SA

SB

S′

S′A = P1 t P2

S′B = P3

P1 P2

Figure 5. Left: The proper arcs in F cut a reduced w-admissible surface
S into SA and SB, and in this example SA has two polygonal boundary
components and SB has one. Right: Simplifying S as in Lemma 3.9 gives a
w-admissible S′ in simple normal form, which is a union of a disk-piece P3

and two annulus-pieces P1 and P2, where d(P1) = d(P2) = 2, and d(P3) = 4.

Since f(SA) ⊂ X̂A, each polygonal boundary component of SA is mapped to a loop
in X̂A, representing some conjugacy class in A, referred to as the winding class of this
polygonal boundary component. Note that the winding class is necessarily trivial if the
polygonal boundary component bounds a disk component of SA.

There is a similar structure on SB and we define the terminology similarly. The surface
S is obtained by gluing SA and SB along the turns.

Definition 3.8 ((simple) normal form, disk-pieces, and annuli-pieces). We call each con-
nected component of SA or SB a piece. We refer to such a decomposition of S into pieces
as the normal form of the reduced w-admissible surface (f, S). We say the normal form is
simple if each piece has exactly one polygonal boundary component and is homeomorphic
to either a disk or an annulus; see the right of Figure 5.



THE WIEGOLD PROBLEM AND FREE PRODUCTS OF LEFT-ORDERABLE GROUPS 13

In the simple normal form, we refer to the two kinds of pieces as disk-pieces and annulus-
pieces depending on the topological type. For each such piece P , define its valence as
d(P ) := k if the unique polygonal boundary component has 2k-sides (i.e. k segments),
where k ∈ Z+. Denote the Euler characteristic of such a piece by χ(P ), which is 1 (resp.
0) if P is a disk-piece (resp. annulus-piece).

We can always simplify a w-admissible surface into one that admits a simple normal form.
In particular, a piece in SA with more than one A-boundary component can be simplified.

Lemma 3.9. For any w-admissible surface (f, S), there is another w-admissible surface
(f ′, S′), such that (f ′, S′) has a simple normal form, with −χ−(S′) ≤ −χ−(S) and deg(S′) =
deg(S). Moreover, (f ′, S′) is boundary-incompressible if (f, S) is.

Proof. By Lemma 3.7, we may assume that (f, S) is reduced. Decompose S into the normal
form by the process above. Then each piece must contain at least one polygonal boundary
component, since otherwise this piece must be a component of S disjoint from the w-
boundary.

In particular, any piece homeomorphic to a disk must have a unique polygonal boundary
component, thus it is a disk-piece.

Consider any piece P that is not a disk. Then χ(P ) ≤ 0. Let us assume that P ⊂ SA,
and the other case is similar. For each polygonal boundary component, cut out a tubular
neighborhood N of it. Then N is an annulus and we treat the new boundary component
of N as an A-boundary as it is mapped to a loop in X̂A. This cuts P into some P ′
homeomorphic to P together with finitely many annuli like N . So χ(P ′) = χ(P ) ≤ 0, and
throwing P ′ away does not increase −χ−(S). Moreover, the operation above is performed
away from the polygonal boundaries, so it does not affect the gluing of SA with SB and
does not change the w-boundary; see Figure 5.

Applying this to each such piece P in S, denote the new surface as S′ and define f ′ as
the restriction of f . This makes (f ′, S′) a reduced w-admissible surface with −χ−(S′) ≤
−χ−(S) and deg(S′) = deg(S). Moreover, the normal form of S′ consists of disk-pieces
and annuli-pieces by construction. Since we are just deleting a subsurface of S to obtain
S′, boundary-incompressibility of S implies that of S′. �

Finally, we give a formula to compute the Euler characteristic of a w-admissible surface
S in a simple normal form, which we will use in the next section for our estimates.

Lemma 3.10. For any w-admissible surface S in a simple normal form, we have

−χ−(S) = −χ(S) =
∑
P

[
d(P )

2
− χ(P )

]
,

where the summation is taken over all pieces P in the decomposition of S.

Proof. Any S in simple normal form is reduced. Hence S has no closed or disk components
(as w has infinite order). Thus χ−(S) = χ(S).
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Now by Mayer–Vietoris, using the fact that SA and SB are disjoint unions of pieces P ,
we have

χ(S) = χ(SA) + χ(SB)− χ(F ) =
∑
P

χ(P )− |F |,

where |F | denotes the number of proper arcs in F (each having Euler characteristic 1).
Note that each piece witnesses d(P ) proper arcs in F , namely the turns in P , and

each proper arc in F is counted exactly twice, by a piece in SA and one in SB. Thus
|F | =

∑
P d(P )/2. Combining this with the formula above, the desired equation follows. �

4. The spectral gap property via stackings

The purpose of this section is to prove Theorem D, which we restate as the following
stronger version, allowing A and B to be uncountable. This is not essential, since a w-
admissible surface in simple normal form only sees the countable subgroups A′ and B′. So
we will assume A and B to be countable in the proof below.

Theorem 4.1. For any free product G = A ? B and a cyclically reduced word w =
a1b1 . . . anbn ∈ A ? B with n ∈ Z+, ai ∈ A \ {id} and bi ∈ B \ {id}. If there is a rel-
ative stacking of w in G′ = A′ ? B′, where A′ (resp. B′) is the subgroup generated by
a1, . . . , an (resp. b1, . . . , bn), then for any boundary-incompressible w-admissible surface S
in G, we have

−χ−(S) ≥ deg(S).

We use the setup as in Section 3.1. By Lemma 3.9, it suffices to prove the theorem for
any (f, S) that is in simple normal form. For our estimate of Euler characteristic, we need
to put some additional structure on the pieces using the relative stacking.

A prefix u of w is a subword of w of the form u = a1b1 . . . ai or u = a1b1 . . . aibi for for
some 1 ≤ i ≤ n. There are exactly |w| = 2n of them.

As in Section 3.1, we view w as a map fw : S1
w → X so that the set Jw = f−1w (?) of

junctures divides the oriented circle S1
w into |w| = 2n oriented arcs α1, β1, . . . , αn, βn in

cyclic order. The map fw takes each arc αi (resp. βi) to a loop based at ? representing
ai ∈ A (resp. bi ∈ B). Note that the junctures correspond to prefixes u of w, by thinking of
a juncture as where the prefix u ends, where the juncture between βn and α1 corresponds
to the full word w.

Recall that a relative stacking of w gives a right action of G on R and a special point
x whose trajectory Ω(w, x) is stable (i.e. this is a multiset without repeated elements and
also x · w = x), where each point in the trajectory is x · u for a nonempty prefix u of w.
Hence a relative stacking gives an assignment λ : Jw → R, where the value of the juncture
corresponding to a prefix u is x ·u. We record the data of a relative stacking into properties
of this assignment λ as follows:

Lemma 4.2. Given a relative stacking of w, the assignment λ : Jw → R is injective, with
the property that, for each arc αi (resp. βi) on S1

w going from a juncture j to another
juncture j′, we have λ(j) · ai = λ(j′) (resp. λ(j) · bi = λ(j′)), for the action given by the
relative stacking.
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Proof. The injectivity of λ follows from the fact that the elements in Ω(w, x) are distinct.
The other property is by definition except for the arc α1: It goes from the juncture j
corresponding to w to the juncture j′ corresponding to the prefix a1, but note that λ(j) =
x · w = x, so λ(j) · a1 = x · a1 = λ(j′) as desired. �

The properties of λ described above involve the right action from the relative stacking,
and essentially encapsulate the stability of Ω(w, x). In what follows, we will just work with
the assignment λ instead of the relative stacking.

In this form, interpreted topologically, this is analogous to the notion of stacking in
[LW17]. In fact, one can generalize our notion of relative stacking to the setting of graphs
of groups with trivial edge groups. If the vertex groups are also trivial, then it is equivalent
to stacking in the sense of [LW17]. Our definition is inspired by but different from the
notion of relative stacking in [Mil21].

Recall from Section 3.1 that the restriction of the map f to each w-boundary component
C of S of some degree d ≥ 1 factors as a map of the form C ∼= S1 p→ S1

w
fw→ X for a covering

map p of degree d. The map p pulls back the junctures Jw on S1
w to junctures JC := p−1(Jw)

on C, which cut C into d|w| segments, each labeled by some asi or b
s
i , where s = ±1 records

whether p is orientation-preserving when the C is equipped with the orientation induced
from S.

The map p pulls back the assignment λ to an assignment λ̂C : JC → R defined as
λ̂C := λ ◦ p, which is |w|-periodic when we go around JC in the cyclic order. Define JS
as the disjoint union of JC over all w-boundary components C, and define λ̂ : JS → R
component-wise using λ̂C . Note that |JS | = |w|deg(S).

As (f, S) is in simple normal form, it is reduced and F = f−1(?) is a finite disjoint union
of embedded proper arcs, which correspond to turns on the pieces. Each such arc γ connects
two junctures j, j′ ∈ JS , and we orient γ so that it points from j to j′ if λ̂(j) > λ̂(j′) and the
other way around if λ̂(j) < λ̂(j′). The basic but important observation below shows that
this defines an orientation on each arc γ ⊂ F whenever (f, S) is boundary-incompressible.

Lemma 4.3. If (f, S) is boundary-incompressible and in simple normal form, then for any
arc γ ⊂ F connecting junctures j, j′ ∈ JS, we have λ̂(j) 6= λ̂(j′).

Proof. Let C and C ′ be the w-boundary components of S that j and j′ belong to, respec-
tively. Suppose λ̂(j) = λ̂(j′). Since the map λ is injective by Lemma 4.2, the junctures j
and j′ must correspond to the same juncture j∗ ∈ Jw on S1

w. Assume that j∗ is the one
between αi and βi for some 1 ≤ i ≤ n. The case where j∗ is between some βi and αi+1 is
similar.

With the induced orientation from S, there is a segment s1 on C (resp. s′1 on C ′) ending
at j (resp. j′) and a segment s2 on C (resp. s′2 on C ′) starting at j (resp. j′); see the left
of Figure 6. Suppose C (resp. C ′) represents the conjugacy class of wn for some n 6= 0 ∈ Z
(resp. wn′ for some n′ 6= 0 ∈ Z). There are two cases for the labels on s1 and s2 depending
on the sign of n, and similarly on the C ′ side:

(1) If n > 0 (resp. n′ > 0), then s1 (resp. s′1) is labeled by ai and s2 (resp. s′2) by bi;
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j

j′

s1(ai)

s′2(a−1i )

C

C ′

s2(bi)

s′1(b−1i )

L LN γPA PB

j+1 j−2

j+2

j−3

j+3j−4

j+4

j−1

γ2

γ3

γ4

γ1

s1 s2

s3s4

P

j−5 j+5

j−6j+6

s5

s6

P ′

Figure 6. Left: The local structure of an arc γ ∈ F connecting two junc-
tures j ∈ JC and j′ ∈ JC′ that correspond to the same j∗ ∈ Jw. A neighbor-
hood N of C ∪C ∪γ witnesses boundary-compressibility. Right: Two pieces
P and P ′ in the simple normal form of some S, marked with λ̂-orientations.
In this example, sc(P ) = 0 and sc(P ′) = 2.

(2) If n < 0 (resp. n′ < 0), then s1 (resp. s′1) is labeled by b−1i and s2 (resp. s′2) by
a−1i .

We now observe that n and n′ must have opposite signs, and in particular C 6= C ′. In
fact, recall that F cuts S into two subsurfaces SA and SB, each of which consists of pieces.
The arc γ appears as turns in exactly two pieces PA ⊂ SA and PB ⊂ SB. Up to swapping
j and j′, let us assume that the turn on PA with the induced orientation from PA is from j
to j′; see the left of Figure 6. Then s1 and s′2 lie in PA and must be labeled by something
in the group A, so we must have n > 0 and n′ < 0 based on the possibilities listed above.

Let N be a tubular neighborhood of C∪γ∪C ′, which is homeomorphic to a pair of pants
with boundary components C, C ′ and L for some embedded loop L in S. Note that f maps
γ to ?, so it follows that L with the induced orientation from N represents the conjugacy
class of w−(n′+n), which implies that (f, S) is boundary-compressible; see Definition 3.3 and
take m = −n′. This contradicts our assumption and thus we cannot have λ̂(j) = λ̂(j′). �

With the lemma above, this defines an orientation on each arc in F if S is boundary-
incompressible. Refer to this as the λ̂-orientation. Based on this, we make the following
definition:

Definition 4.4. For each segment s on the w-boundary of S connecting two junctures j1
and j2, let γ1 and γ2 be the arcs in F that contain j1 and j2 respectively. There are four
cases for the λ̂-orientations on γ1 and γ2:

(1) γ1 points towards j1, and γ2 points towards j2;
(2) γ1 points away from j1, and γ2 points away from j2;
(3) γ1 points towards j1, and γ2 points away from j2; and
(4) γ1 points away from j1, and γ2 points towards j2.
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We say s is consistent if we have case (1) or (2), and we say s is inconsistent otherwise.
For example, in the right part of Figure 6, the segment si is inconsistent for 1 ≤ i ≤ 4 and
is consistent for i = 5, 6.

The lemma below is a key observation that helps us estimate the number of (in)consistent
segments on the w-boundary of S: Each copy of w (or w−1) on ∂S witnesses at least two
inconsistent arrows.

Lemma 4.5. For any boundary-incompressible w-admissible surface S in simple normal
form, the total number of inconsistent segments is at least 2 deg(S), thus the total number
of consistent segments is no more than (|w| − 2) deg(S).

Proof. It suffices to prove the lower bound on the total number of inconsistent segments,
as the total number of segments is |w|deg(S).

Since λ : Jw → R is injective by Lemma 4.2, there is a unique juncture jM ∈ Jw (resp.
jm ∈ Jw) for which λ(jM ) ≥ λ(j) (resp. λ(jm) ≤ λ(j)) for all j ∈ Jw. Clearly jM 6= jm.

For each w-boundary component C of degree d, there are exactly d junctures in JC
corresponding to jM (resp. jm), which we call maximal (resp. minimal). Moreover, the d
maximal and d minimal junctures sit in an alternating way on C.

For each maximal (resp. minimal) juncture j, the adjacent arc γ ⊂ F must have λ̂-
orientation pointing away from (resp. towards) j. Thus between each adjacent pair of
maximal and minimal junctures, there is at least one segment that is inconsistent. Thus
we must have at least 2d inconsistent segments on each w-boundary component of degree
d. Taking the sum over all w-boundary components completes the proof. �

Another key observation (Lemma 4.6) is to count the number of consistent segments in
each piece P . Recall that the valence d(P ) of a (disk- or annulus-) piece P is the number of
segments on the unique polygonal boundary component of P . Among these d(P ) segments,
denote the number of consistent segments as sc(P ), the number of sign changes in P .

The proof of Lemma 4.6 below justifies the terminology. This is where we make use of
the action from the relative stacking.

Lemma 4.6. For any (disk- or annulus-) piece P , the number of sign changes sc(P ) ∈ Z≥0
is even. Moreover, sc(P ) > 0 for each disk-piece P .

Proof. Equip the polygonal boundary of P with the orientation induced from P . Recall
that the polygonal boundary of P alternates with turns and segments, so we can enumerate
them in the cyclic order as γ1, s1, . . . , γk, sk, where k = d(P ) ∈ Z+ is the valence of P , each
γi ⊂ F is a turn and each si is a segment on some w-boundary component of S. Denote
the endpoints of each si as j−i and j+i , which are junctures on some w-boundary, so that si
goes from j−i to j+i . Then each γi with the topological orientation (induced from P ) goes
from j+i−1 to j−i , where indices are taken mod k and similarly below; see the piece P in the
right part of Figure 6.

The topological orientation on each γi may or may not agree with the λ̂-orientation
defined earlier. Assign a number signi ∈ {1,−1} for each 1 ≤ i ≤ k so that signi = 1 if and
only if these two orientations on γi agree.
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For each segment si, the topological orientation on γi points towards j−i , and the one of
γi+1 points away from j+i . Thus si is consistent if and only if signi−1 = −signi.

Thus the number sc(P ) of consistent segments is equal to the number of i ∈ {1, . . . , k}
with signi−1 = −signi; see the pieces P and P ′ on the right of Figure 6 as examples. This
is why we refer to it as the number of sign changes in P . Then clearly sc(P ) is even.

Next we show sc(P ) 6= 0 if P is a disk-piece. To simplify the notation in the proof below,
let us assume that P lies in SA, and the other case works by symmetry. Then each segment
si is labeled by some element ϕi ∈ A, where ϕi = a±1t for a letter at in the cyclically reduced
expression of w, where 1 ≤ t ≤ n. By Lemma 4.2 and the definition of λ̂, we know

λ̂(j−i ) · ϕi = λ̂(j+i ).

Moreover, since P is a disk-piece, the winding class is trivial, so

ϕ1ϕ2 · · ·ϕk = id.

Suppose sc(P ) = 0. Then we have either ∀i, signi ≡ 1 or ∀i, signi ≡ −1. Assume without
loss of generality that signi ≡ 1 for all i, as the other case is similar; see the piece P
(assuming it is a disk) on the right of Figure 6 as an illustration. That is, for each i, the
λ̂-orientation of each γi goes from j+i−1 to j−i , meaning

λ̂(j+i−1) > λ̂(j−i ).

Then we have λ̂(j+k ) > λ̂(j−1 ) by taking i = 1. As ϕ1 acts by an orientation-preserving
homeomorphism of R, we have

λ̂(j+k ) · ϕ1 > λ̂(j−1 ) · ϕ1 = λ̂(j+1 ) > λ̂(j−2 ).

Then applying ϕ2 to the inequality λ̂(j+k ) · ϕ1 > λ̂(j−2 ), we similarly obtain

λ̂(j+k ) · ϕ1ϕ2 > λ̂(j−2 ) · ϕ2 = λ̂(j+2 ) > λ̂(j−3 ).

Inductively, this shows that, for all 1 ≤ ` ≤ k, we have

λ̂(j+k ) · ϕ1 · · ·ϕ` > λ̂(j+` ) > λ̂(j−`+1).

Taking the first inequality with ` = k and using ϕ1ϕ2 · · ·ϕk = id, we observe that

λ̂(j+k ) = λ̂(j+k ) · ϕ1 · · ·ϕk > λ̂(j+k ),

which gives a contradiction. �

Corollary 4.7. For any disk- or annulus-piece P , we have

sc(P ) ≥ 2χ(P ).

Proof. If P is an annulus-piece, then 2χ(P ) = 0 ≤ sc(P ). If P is a disk-piece, then
χ(P ) = 1, and sc(P ) ≥ 2 by Lemma 4.6. �

Now we are in a place to prove Theorem 4.1.
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Proof of Theorem 4.1. By Lemma 3.9, we may assume that S is in simple normal form.
In particular, χ−(S) = χ(S). Using the notions above, note that for each piece P , the
valence d(P ) counts the total number of all segments on its polygonal boundary, among
which sc(P ) of them are consistent segments. We know the sum of d(P ) over all pieces P in
S is |w|deg(S), and the sum of sc(P ) is at most (|w|−2) deg(S) by Lemma 4.5. Combining
this with Lemma 3.10 and Corollary 4.7, we obtain the following estimate of −χ(S):

−χ(S) =
∑
P

[
d(P )

2
− χ(P )

]
≥ 1

2

∑
P

[d(P )− sc(P )]

≥ 1

2
[|w|deg(S)− (|w| − 2) deg(S)]

= deg(S). �

The proof presented here is similar in spirit to the one in [DH91], but the novelty of our
approach is the usage of λ̂ as our labels of junctures, and its construction using actions
on the line as presented in the next section. Besides, one can also phrase the topological
argument above in terms of the LP duality method in [Che25, Section 4], where the cost
function here is defined using the λ̂-orientation. It can also be phrased using angle structures
similar to the method used in [Mar24].

5. The existence of relative stackings

All actions in this section will be right actions, and for homeomorphisms λ1 : X → Y
and λ2 : Y → Z, the composition will be denoted as λ1λ2, rather than λ2 ◦ λ1. A classical
result states that a countable group G admits a faithful action by orientation-preserving
homeomorphisms on the real line if and only if it is right-orderable. Given a right-order on
G, one may construct such an action on R by first constructing a suitable order-embedding
G → R so that the natural right action on the image extends to an action by orientation-
homeomorphisms on R [DNR14]. This is the so called dynamical realization of the order.
Conversely, given an embedding G → Homeo+(R), one can extract a right-invariant order
on G as follows. Choose an enumeration (xn)n∈N of Q. Then f < g if and only if for the
smallest n ∈ N such that xn · f 6= xn · g, it holds that xn · f < xn · g. This is clearly a right
invariant total order.

Consider two countable right-orderable groups A and B. Denote G = A ? B. Consider
an action σ : G→ Homeo+(R) (not necessarily faithful), and a word w = a1b1 . . . anbn such
that ai ∈ A \ {id}, bi ∈ B \ {id}. Recall that a word w1 is a prefix of w if it is a nonempty
word of the form a1b1 . . . ai or a1b1 . . . aibi for 1 ≤ i ≤ n. This is a proper prefix if it does
not equal w. An ordered pair of nonempty words (w1, w2) in G is a prefix pair if w1 and
w1w2 are both prefixes of w (note that w1 will be a proper prefix of w but it may be the
case that w1w2 = w). Recall from Definition 2.1 that given x ∈ R, we define the trajectory
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of x under w as the multiset of points:

Ω(w, x) = {x · σ(w1) | w1 is a prefix of w}.
The trajectory of x under w is stable if the multiset Ω(w, x) has no element that occurs
more than once, and x · σ(w) = x.

Let {In}n∈X be a collection of pairwise disjoint nonempty open intervals in R for some
countable set X which may be finite or infinite. Let τn : H → Homeo+(In), n ∈ X be
actions of some group H. We can define a diagonal-product action:

τ : H → Homeo+(R) τ := ~n∈Xτn

as the action where each group element fixes each point in R \
⋃

n∈X In, and:

x · τ(α) = x · τn(α) whenever x ∈ In, α ∈ H
We define the following variation which we also call the diagonal-product, for notational
simplicity. Consider an action σ : H → Homeo+(R) such that σ pointwise fixes a nonempty
open interval I. Consider another action τ : H → Homeo+(I). Then we define σ ~ τ also
as the diagonal-product action which agrees with σ on R \ I and with τ on I.

Given actions σ : A→ Homeo+(R) and τ : B → Homeo+(R), we define the action

η : A ? B → Homeo+(R) η := 〈σ, τ〉
as the action generated by these (using the defining property of free products). We say that
η is generated by the actions σand τ , since it is generated by the images of these actions in
Homeo+(R). Note that η may not be faithful, even if σ and τ are.

The purpose of this section is to prove Theorem E. If w is a proper power, it is easy
to see that a relative stacking cannot exist. So we focus on the hard direction, which is
reformulated below.

Theorem 5.1. Let A,B be countable right-orderable groups and G = A ? B. Consider a
cyclically reduced word

w = a1b1 . . . anbn ∈ G, ai ∈ A \ {id}, bi ∈ B \ {id}.
Assume that w is not a proper power. Then there exists an action σ : G → Homeo+(R)
and some x ∈ R such that Ω(w, x) is stable.

We remark that in Theorem 5.1, we do not require the action σ to be faithful. How-
ever, from such a σ, one can easily obtain an action satisfying the same conditions that
is faithful. Let σ1 : G → Homeo+(0, 1) be an action obtained by conjugating σ via some
homeomorphism ν : R → (0, 1), and let σ2 : G → Homeo+(1, 2) be a faithful action. Note
that the latter exists since free products of left orderable groups are left orderable [DNR14].
Then the diagonal-product σ1 ~ σ2 is a faithful action of G that satisfies the requirements
of Theorem 5.1, as witnessed by the image ν(x) of the point x which witnessed this for σ.

The following proposition will be a key step.

Proposition 5.2. Let A,B be countable right-orderable groups and G = A ? B. Consider
a cyclically reduced word

w = a1b1 . . . anbn ∈ A ? B, ai ∈ A \ {id}, bi ∈ B \ {id}.
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Assume that w is not a proper power. Let (w1, w2) be a prefix pair for w. Then there exists
an action of σ : G→ Homeo+(R) and some x ∈ R such that:

(1) x · σ(w) = x.
(2) x · σ(w1w2) 6= x · σ(w1).

First, we will see how we can use Proposition 5.2 to supply the proof of Theorem 5.1.
The main ingredient in this will be Lemma 5.3 below, for which we need a few definitions.
Let H be a countable group. Given a fixed variable y, we shall consider systems of equations
and inequations over H, or for brevity simply a system over H. Each equation in such a
system will be of the form y ·α = y and each inequation will be of the form y · β 6= y where
α, β ∈ H are fixed group elements. A solution to the system will be a pair (τ, x) where
τ : H → Homeo+(R) is an action (not necessarily faithful) and x ∈ R, so that:

(1) For each equation y · α = y in the system it holds that x · τ(α) = x
(2) For each inequation y · β 6= y in the system, it holds that x · τ(β) 6= x.

Such a system is called a finite system if there are finitely many such equations and inequa-
tions. Given a system Λ, we denote by Λ= the set of equations in Λ and by Λ 6= the set
of inequations in Λ. Given a finite collection of finite systems Λ1, . . . ,Λn, we define a new
system

Ξ(Λ1, . . . ,Λn) := (
⋃

1≤i≤n
Λ 6=i ) ∪ (

⋂
1≤i≤n

Λ=
i ).

For example, consider the Baumslag–Solitar group BS(1, 2) = 〈f, g | f−1gf = g2〉, and
consider the system Λ = {y · f = y, y · g 6= y}. Then the action τ : BS(1, 2)→ Homeo+(R)
given by t · τ(f) = 2t, t · τ(g) = t + 1 for t ∈ R, and the point 0 ∈ R provides a solution.
Indeed, one checks that 0 · τ(f) = 0 and 0 · τ(g) = 1 6= 0.

Lemma 5.3. Given a countable group H, let Λ1, . . . ,Λm be finite systems over H. If each
Λi is solvable over H, then Ξ(Λ1, . . . ,Λm) is solvable over H.

Proof. We will show this form = 2, and the general case will follow from the same argument
using induction, since

Ξ(Λ1, . . . ,Λm) = Ξ(Ξ(Λ1, . . . ,Λm−1),Λm).

Consider actions σi : H → Homeo+(R) and xi ∈ R that are solutions to the systems Λi,
for each 1 ≤ i ≤ 2. We fix an enumeration of the orbit O = x1 · σ1(H) as (pn)n∈N, where
x1 = p0. We perform the “blowup” construction as follows. We replace each point pn by a
closed interval In of length 1

2n to obtain a new copy of the real line, upon which the action
σ1 naturally extends to an action σb1 : H → Homeo+(R) as follows. Whenever pi ·σ1(α) = pj
for some α ∈ H, σb1(α) maps the interval Ii to Ij by the unique orientation-preserving affine
homeomorphism ηi,j : Ii → Ij . So the restriction σb1(α)|Ii = ηi,j .

The action σb1 satisfies the following key property. Recall that we fixed x1 = p0. For each
equation y · α1 = y and each inequation y · α2 6= y in Λ1, it holds that:

(1) I0 is fixed pointwise by σb1(α1).
(2) (I0 · σb1(α2)) ∩ I0 = ∅.
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Since each open interval int(In) is homeomorphic to R, we choose homeomorphisms
νn : R→ int(In) such that νiηi,j = νj for all i, j. Using topological conjugacy given by the
maps νn : R→ int(In), for each n ∈ N we build an action:

τn : H → Homeo+(int(In)), τn = ν−1n σ2νn.

We consider the diagonal-product action:

τ : H → Homeo+(R) τ = ~n∈Nτn.

Note that for each pair α, β ∈ H, by construction it holds that

τ(α)σb1(β) = σb1(β)τ(α).

This naturally induces an action:

λ : H ⊕H → Homeo+(R), λ(α, β) = τ(α)σb1(β) = σb1(β)τ(α).

By our hypothesis on σ2, we have a point z ∈ int(I0) such that for each equation y ·α1 = y
and inequation y · α2 6= y in Λ2, it holds that

z · τ(α1) = z, z · τ(α2) 6= z.

Let ρ : H → H ⊕H be the “diagonal embedding” given by ρ(α) = (α, α) for each α ∈ H.
Then ρλ is the desired action and z is the required point. �

Proof of Theorem 5.1 assuming Proposition 5.2. We enumerate the set of prefix pairs of w
as {(w(i)

1 , w
(i)
2 ) | 1 ≤ i ≤ k}. For each 1 ≤ i ≤ k, we define a system Λi consisting of one

equation and one inequation:

y · w = y, y · w(i)
1 w

(i)
2 (w

(i)
1 )−1 6= y.

Applying Proposition 5.2, for each 1 ≤ i ≤ k we obtain a group action σi : G→ Homeo+(R)
such that there exists some xi ∈ R for which

xi · σi(w) = xi, xi · σi(w(i)
1 w

(i)
2 ) 6= xi · σi(w(i)

1 ).

Applying Lemma 5.3 to Λ1, . . . ,Λk, we obtain an action σ : G → Homeo+(R) which
witnesses a solution to the system Ξ(Λ1, . . . ,Λk) for G as some x ∈ R. Note that each Λi

contains the same equation, y · w = y, so we have that

Ξ(Λ1, . . . ,Λk) = (
⋃

1≤i≤k
Λ 6=i ) ∪ {y · w = y} =

⋃
1≤i≤k

Λi.

The point x ∈ R that witnesses this for the action σ satisfies that Ω(w, x) is stable. This
proves Theorem 5.1. �

We shall now focus on proving Proposition 5.2. First we simplify it to a proposition
that is more convenient to prove. To do so, we make the following basic observation. It
generalizes easily to any system over any group, but we only need this for systems consisting
of one equation and one inequation. We will also use this in the proof of Proposition 5.5.
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Lemma 5.4. Fix a group H and consider a system Λ with one equation y · α = y and one
inequation y · β 6= y, for some given α, β ∈ H. For any h ∈ H, consider the h-conjugate
system Λ′ of Λ with one equation y · (h−1αh) = y and one inequation y · (h−1βh) 6= y. Then
Λ has a solution over H if and only if Λ′ does.

Proof. Suppose Λ has a solution (τ, x), that is, we have x · τ(α) = x and x · τ(β) 6= x. Then
(τ, x · τ(h)) is a solution for Λ′. The other direction works by symmetry. �

Now we show that Proposition 5.2 reduces to the following simpler statement.

Proposition 5.5. Let A,B be countable right-orderable groups and G = A ? B. Consider
a cyclically reduced word

w = a1b1 . . . anbn ∈ A ? B, ai ∈ A \ {id}, bi ∈ B \ {id},
and w1 a proper prefix of w. Assume that w is not a proper power. Then there exists an
action τ : A ? B → Homeo+(R) and some x ∈ R such that x · τ(w) = x and x · τ(w1) 6= x.

Proof of Proposition 5.2 assuming Proposition 5.5. The goal is to find a solution (σ, x) for
the following system Λ over G = A ? B, where we have one equation y · w = y and one
inequation y · (w1w2w

−1
1 ) 6= y.

By Lemma 5.4, this is equivalent to solving the w1-conjugate system Λ′ with one equation
y · (w−11 ww1) = y and one inequation y · w2 6= y. Note that w−11 ww1 is a cyclic conjugate
of w since w1 is a prefix of w. And w2 is a proper prefix of w−11 ww1, so Λ′ has a solution
by Proposition 5.5. �

The goal of the rest of the section is to supply the proof of Proposition 5.5. We will make
use of the following elementary lemmas.

Lemma 5.6. Given a nontrivial element f in a countable right-orderable group H, a
nonempty open interval I, and x, y ∈ I with x < y, we can find faithful actions ν1, ν2 :
H → Homeo+(I) such that y < x · ν1(f) and y · ν2(f) < x.

Proof. Since f 6= id, for any s 6= t ∈ I, by conjugating a fixed faithful action, there is
another faithful action ν : H → Homeo+(I) such that s · ν(f) = t. The existence of ν1 and
ν2 easily follows from this by choosing s and t appropriately. �

Lemma 5.7. Consider a countable right-orderable group H, a nonempty open interval I,
and x, y ∈ I with x < y. Let f, g ∈ H \{id} be such that f 6= g. Then we can find a faithful
action σ : H → Homeo+(I) such that y · σ(g) < x · σ(f).

Proof. We consider a dynamical realization σ1 : H → Homeo+(R) of H with a free orbit.
By conjugating with an orientation-reversing homeomorphism if needed, we can assume
that there is a point z ∈ R such that z · σ1(g) < z · σ1(f). Using continuity, we find points
x1 < y1 in a small neighborhood of z such that y1 · σ1(g) < x1 · σ1(f). Now we consider a
homeomorphism ν : R→ I such that ν(x1) = x, ν(y1) = y. Upon conjugating σ1 by ν, we
obtain the required σ. �

Before proving Proposition 5.5, first we discuss an elementary case as a warm-up.
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Example 5.8. Let A,B be as above and let w = ab, w1 = a for a ∈ A \ {id}, b ∈ B \ {id}.
We would like to build an action η : A?B → Homeo+(R) which witnesses the conclusion of
the Proposition 5.5 for these words, that is, x · η(ab) = x and x · η(a) 6= x for some x ∈ R.

Let
I1 = [0, 2], J1 = [1, 3],K = [2, 4], J ′1 = [3, 5], I ′1 = [4, 6].

Using Lemma 5.6, it is straightforward to find actions

σ1 : A→ Homeo+(I1), τ1 : B → Homeo+(J1),

σ′1 : A→ Homeo+(I ′1), τ ′1 : B → Homeo+(J ′1),

such that
1 · σ1(a) > 1.5, 1.5 · τ1(b) > 2.5,

5 · σ′1(a) < 4.5, 4.5 · τ ′1(b) < 3.5.

Now let ν : A→ Homeo+(K) be an action such that 2.5 · ν(a) > 3.5. Let

σ : A→ Homeo+[0, 6], σ = σ1 ~ ν ~ σ
′
1,

and
τ : B → Homeo+[0, 6], τ = τ1 ~ τ

′
1.

We define η = 〈σ, τ〉. We call such an action a dynamical arrangement, which is formally
defined below. For

K1 = [2.5, 3.5] , K2 = [1, 5],

our dynamical arrangement is designed to satisfy that

K1 · η(ab) ⊂ K2 · η(ab) ⊂ K1, (K1 · η(a)) ∩K1 = ∅.
In particular, by the intermediate value theorem, ab fixes a point in K1 and a moves every
point in K1.

Now we introduce some terminology for the general case. For n ∈ N, a catenation of inter-
vals (see Figure 7) is an ordered tuple of the form (I1, J1, . . . , In, Jn) or (I1, J1, . . . , In, Jn, In+1)
of nonempty open intervals in R such that for all k (in the given range):

(1) Each interval Ik, Jk has length 2, and the endpoints lie in Z;
(2) sup(Ik) = inf(Ik+1) and sup(Jk) = inf(Jk+1); and
(3) sup(Ik) is the midpoint of Jk and inf(Jk) is the midpoint of Ik.

Note that a catenation is an ordered tuple of intervals, and in some cases we shall use a
different indexing system such as for instance, (Jm, Im, . . . , J1, I1). However, it will still
hold that the intervals appear “from left to right” starting from Jm and onward until I1.

Given a catenation of the form (I1, J1, . . . , In, Jn) or (I1, J1, . . . , In, Jn, In+1), a dynamical
arrangement is an action of A ? B which is generated by the diagonal-product of chosen
actions of A on the intervals Ik’s and the diagonal-product of chosen actions of B on
the intervals Jk’s. We shall construct dynamical arrangements that allow us to prove
Proposition 5.5.

We record two elementary lemmas concerning actions emerging from catenations. These
are essentially natural generalizations of a key idea in the example above.
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I1

J1

I2

J2

x = p1

q1

p2

q2

p3 · · ·

· · ·

Ik

Jk

pk

qk

pk+1

y − ε

y

Figure 7. The action on a catenation in Lemma 5.9.

Lemma 5.9. Let A,B be countable right-orderable groups. Consider a reduced word

w = a1b1 . . . akbk ∈ A ? B, ai ∈ A \ {id}, bi ∈ B \ {id}.

Let (I1, J1, . . . , Ik, Jk) be a catenation of intervals. Let x = inf(J1), y = sup(Jk) and let
ε > 0. We can construct actions

σi : A→ Homeo+(Ii), τi : B → Homeo+(Ji), 1 ≤ i ≤ k,

such that the following holds. Let ν = 〈σ, τ〉 be the action where

σ = ~1≤i≤kσi, τ = ~1≤i≤kτi.

Then it holds that x · ν(a1b1 . . . akbk) ∈ (y − ε, y). Moreover, an analogous statement holds
for words of the form w = a1b1 . . . ak.

Proof. Fix x = p1 for notational convenience. First, we construct an action

σ1 : A→ Homeo+(I1) such that q1 = p1 · σ1(a1) ∈ int(J1).

Next, we construct an action

τ1 : B → Homeo+(J1) such that p2 = q1 · τ1(b1) ∈ int(I2).

Proceeding inductively, we construct actions

σi : A→ Homeo+(Ii), τi : B → Homeo+(Ji),

such that:
qi = pi · σi(ai) ∈ int(Ji), for 1 ≤ i ≤ k.

and
pi+1 = qi · τi(bi) ∈ int(Ii+1), for 1 ≤ i < k.

Finally, we choose an action

τk : B → Homeo+(Jk) such that pk+1 := qk · τk(bk) ∈ (y − ε, y).

See Figure 7. Then the required actions are:

σ = ~1≤i≤kσi, τ = ~1≤i≤kτi, ν = 〈σ, τ〉.

�

The following lemma is essentially a “mirror image” version of the previous lemma, whose
proof is the same via conjugating by an orientation-reversing isometry of R.
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Lemma 5.10. Let A,B be countable right-orderable groups. Consider a reduced word

w = a1b1 . . . akbk ∈ A ? B, ai ∈ A \ {id}, bi ∈ B \ {id}.
Let (Jk, Ik, . . . , J1, I1) be a catenation of intervals. Let y = inf(Jk), x = sup(J1) and let
ε > 0. We can construct actions

σi : A→ Homeo+(Ii), τi : B → Homeo+(Ji), 1 ≤ i ≤ k,
such that the following holds. Let ν = 〈σ, τ〉 be the action where

σ = ~1≤i≤kσi, τ = ~1≤i≤kτi.

Then it holds that x · ν(a1b1 . . . akbk) ∈ (y, y + ε). Moreover, an analogous statement holds
for words of the form w = a1b1 . . . ak. �

We are now ready to provide the final proof of this section.

Proof of Proposition 5.5. The proof consists of two cases.
Case 1: w1 = a1b1 . . . ak for some 1 ≤ k ≤ n.
Case 2: w1 = a1b1 . . . akbk for some 1 ≤ k < n.

The proof strategy in both cases is to construct an action σ : G→ Homeo+(R) for which
there is a closed interval I such that

I · σ(w) ⊆ I, (I · σ(w1)) ∩ I = ∅.
The former fact implies that w admits a fixed point in I due to the intermediate value
theorem, and the latter fact implies that w1 does not fix any point in I. Upon choosing x
to be the w-fixed point in I, this will finish the proof. In the second case, we will have to
deal with more technicalities than the first, and that is the only instance where we use the
fact that w is not a proper power.
Proof of Case 1: The proof in this case is similar to that of Example 5.8 considered

above. Consider a catenation (see Figure 8)

(I1, J1, . . . , In, Jn, L1,M1, . . . ,Mk−1, Lk, J
′
n, I
′
n, . . . , J

′
1, I
′
1).

We remark that the choice of indices is deliberate. We let:

x1 = inf(J1), x2 = sup(J ′1),

y1 = sup(Jn), y2 = inf(J ′n),

z1 = y1 −
1

4
, z2 = y2 +

1

4
.

See Figure 8. Note that z1 ∈ int(Jn ∩ L1), z2 ∈ int(J ′n ∩ Lk).
Applying Lemmas 5.9 and 5.10, we choose faithful group actions

νi : A→ Homeo+(Ii), ν ′i : A→ Homeo+(I ′i), 1 ≤ i ≤ n,

τi : B → Homeo+(Ji), τ ′i : B → Homeo+(J ′i), 1 ≤ i ≤ n,
δi : A→ Homeo+(Li), 1 ≤ i ≤ k,

πi : B → Homeo+(Mi), 1 ≤ i ≤ k − 1,
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I1

J1

x1
σ(a1b1 · · · anbn) Jn

z1
y1

L1
σ(a1b1 · · · ak) Lk

I ′1

J ′1

x2
J ′n σ(a1b1 · · · anbn)

y2

z2

Figure 8. The arrangement for Case 1 in the Proof of Proposition 5.5.

and build the action
σ : G→ Homeo+(R), σ = 〈η, ψ〉,

where
η = (~1≤i≤nνi)~ (~1≤i≤kδi)~ (~1≤j≤nν

′
i),

ψ = (~1≤i≤nτi)~ (~1≤i≤k−1πi)~ (~1≤j≤nτ
′
i),

and which satisfies (see Figure 8)
(1) x1 · σ(a1b1 . . . anbn) ∈ (z1, y1).
(2) x2 · σ(a1b1 . . . anbn) ∈ (y2, z2).
(3) z1 · σ(a1b1 . . . ak) > z2.

Let I = [z1, z2]. We claim that the interval I satisfies the required conditions. From the
first two parts and the fact that x1 < z1 < y1 < y2 < z2 < x2, it follows that

I · σ(a1b1 . . . anbn) ⊆ I,
and hence I contains a fixed point for the element a1b1 . . . anbn. However, the third part
ensures that

(I · σ(a1b1 . . . ak)) ∩ I = ∅,
and hence no point in I is fixed by a1b1 . . . ak. This settles the proof for this case.
Proof of Case 2: First we claim that we can assume without generality that bk 6= bn.

Suppose bk = bn, then by Lemma 5.4, it suffices to solve the b−1k -conjugate system, which
has one equation y · (bnwb−1n ) = y and one inequation y · (bkw1b

−1
k ) 6= y. Note that

bnwb
−1
n = bna1b1 . . . an, and bkw1b

−1
k = bka1b1 . . . ak,

and the latter is again a proper prefix of the former and of even length. Next we check if
an = ak and continue this process. If this never halts, then there is a subword u whose
length |u| = gcd(|w|, |w1|) such that w and w1 are both powers of u, contradicting our
assumption that w is not a proper power. Thus up to swapping the factors A and B, we
may assume without loss of generality that bk 6= bn.

From now on, assume bk 6= bn. Consider the catenation

(I1, J1, . . . , In, Jn, L1,M1, . . . ,Mk−1, Lk, J
′
n, I
′
n, . . . , J

′
1, I
′
1).

We let

x1 = inf(J1), x2 = sup(J ′1), y1 = sup(Jn)− 1

2
, y2 = sup(Jn),

p1 = inf(J ′n), p2 = sup(J ′n).

See Figure 9. Applying Lemmas 5.9 and 5.10, we choose faithful groups actions:

νi : A→ Homeo+(Ii), ν ′i : A→ Homeo+(I ′i), 1 ≤ i ≤ n,
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I1

J1

x1
σ′(a1b1 · · · anbn) Jn

y1
y2

L1
σ′(a1b1 · · · ak) Lk

I ′1

J ′1

x2
J ′n σ′(a1b1 · · · an)

p1 u1

u2 p2

J ′n : p1
u1

p2
u2

v2

v1

τ ′n(bn)

τ ′n(bk)

Figure 9. The arrangement for Case 2 in the Proof of Proposition 5.5,
where the crucial interval J ′n has been magnified. The positions of v1, v2
relative to u1, u2 are irrelevant, and here we show one possibility.

τi : B → Homeo+(Ji), 1 ≤ i ≤ n,
τ ′i : B → Homeo+(J ′i), 1 ≤ i < n.

We emphasize the occurrence of i < n above. In particular, we will choose τ ′n at a later
stage. Also choose the following actions using Lemmas 5.9 and 5.10

δi : A→ Homeo+(Li), 1 ≤ i ≤ k,
πi : B → Homeo+(Mi), 1 ≤ i ≤ k − 1,

and build the action
σ′ : G→ Homeo+(R)

given by σ′ = 〈η, ψ〉, where
η = (~1≤i≤nνi)~ (~1≤i≤kδi)~ (~1≤i≤nν

′
i),

ψ = (~1≤i≤nτi)~ (~1≤i≤k−1πi)~ (~1≤i<nτ
′
i),

and which satisfies (see Figure 9):

x1 · σ′(a1b1 . . . anbn) ∈ (y1, y2),

u1 := y1 · σ′(a1b1 . . . ak) ∈ (p1, p2),

u2 := x2 · σ′(a1b1 . . . an) ∈ (p1, p2).

Note that u1 < u2, since the midpoint of J ′n lies in (u1, u2). Using Lemma 5.7, we construct
an action τ ′n : B → Homeo+(J ′n) such that (see the top of Figure 9):

v2 = u2 · τ ′n(bn) < u1 · τ ′n(bk) = v1

Since the action ψ pointwise fixes J ′n by definition, we can define ψ′ = ψ ~ τ ′n. We then
define σ = 〈η, ψ′〉. We claim that our construction satisfies the requirements for I = [y1, v2].
To see this, note that

x2 · σ(a1b1 . . . anbn) = u2 · σ(bn) = u2 · τ ′n(bn) = v2,

so
(x1, x2) · σ(a1b1 . . . anbn) ⊂ (y1, v2).

Since I = [y1, v2] ⊂ (x1, x2), we deduce that

I · σ(a1b1 . . . anbn) ⊆ I.



THE WIEGOLD PROBLEM AND FREE PRODUCTS OF LEFT-ORDERABLE GROUPS 29

Moreover,
y1 · σ(a1b1 . . . akbk) = u1 · σ(bk) = u1 · τ ′n(bk) = v1 > v2.

Therefore, it follows that
(I · σ(a1b1 . . . akbk)) ∩ I = ∅.

So the interval I = [y1, v2] contains a σ(a1b1 . . . anbn)-fixed point, but no point in I is fixed
by σ(a1b1 . . . akbk). This settles the proof for this case. �

6. Proof of the main results

Now we have proved the two main ingredients, Theorems D and E. Using them, we first
deduce Theorem C.

Proof of Theorem C. Here S has no 2-sphere or disk components, so −χ−(S) = −χ(S).
First consider the case where w is not a proper power. All notions involved are preserved

by conjugation, and since w is not conjugate into A or B, we may assume that w is
expressed as a cyclically reduced word. Then by Theorem E, there is a relative stacking
for w, and hence by Theorem D we have −χ−(S) ≥ deg(S). If A or B are uncountable,
pass to the countable subgroups A′ and B′ containing the letters in w, then they are right-
orderable since they are subgroups of A and B respectively, so there is a relative stacking
for w ∈ G′ = A′ ? B′, and the result follows using Theorem 4.1 instead of Theorem D.

Now suppose w = uk is a proper power, where u ∈ G is not a proper power and k ≥ 2.
Note that u is not conjugate into A or B since w is not, so the conclusion holds for u.
Any w-admissible surface S of degree d = deg(S) is naturally also a u-admissible surface of
degree kd, and the notion of boundary-incompressibility is preserved. From what we have
shown for u, we obtain −χ−(S) ≥ kd = k deg(S) ≥ deg(S). �

Finally, we deduce Theorem B from Theorem C.

Proof of Theorem B. We first show the second assertion, namely, for any w ∈ G not conju-
gate into A, the natural map A ↪→ A ? B induces an injection A ↪→ (A ? B)/〈〈w〉〉. This is
obvious if w is conjugate to some b ∈ B since (A ? B)/〈〈w〉〉 = A ? (B/〈〈b〉〉). So we assume
w is not conjugate into B either.

Suppose the map is not injective, namely, there is an a ∈ A \ {id} such that a ∈
〈〈w〉〉. Then by Example 3.5, there are equations of the form (3.1), and we consider one
with minimal length k ≥ 1. As explained in Example 3.5, this gives rise to a boundary-
incompressible w-admissible surface S which is a sphere with k + 1 boundary components
and of degree

deg(S) =
k∑

i=1

|ni| ≥ k.

Note that −χ−(S) = −χ(S) = (k + 1)− 2 = k − 1. By Theorem C, we get

k − 1 = −χ−(S) ≥ deg(S) ≥ k,

which is a contradiction.
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This implies that w does not normally generate A?B when w is not conjugate into A. If
w is conjugate to some a ∈ A, then (A?B)/〈〈w〉〉 = (A/〈〈a〉〉)?B, which is nontrivial. Hence
A ? B has normal rank greater than 1 for any A and B right-orderable and nontrivial. �

With essentially the same proof, we deduce the following:

Corollary 6.1. If A and B are right-orderable, and u ∈ G = A ? B is not conjugate into
A or B and is not a proper power, then for any k ≥ 2, the image of u in G/〈〈uk〉〉 has order
k.

Proof. Denote by ū the image of u in G/〈〈uk〉〉. Clearly ūk = id. It remains to show
um /∈ 〈〈uk〉〉 whenever m is not divisible by k.

Suppose there is such m with um ∈ 〈〈uk〉〉, then we can get an equation

um = (g1u
kn1g−11 )(g2u

kn2g−12 ) · · · (g`ukn`g−1` ),

where ` ∈ Z+, each gi ∈ G and ni 6= 0 ∈ Z for all 1 ≤ i ≤ `. This yields a surface map
f : S → X for X = K(G, 1) such that S is a sphere with ` + 1 boundary components
representing um, ukn1 , . . . , ukn` respectively. This is a u-admissible surface of degree

deg(S) = |m|+ k
∑̀
i=1

|ni| ≥ k` ≥ `.

Among all choices of m not divisible by k and all equations of the form above, choose
one with minimal length ` ≥ 1. Then the corresponding S is boundary-incompressible by
minimality. Thus by Theorem C, we have

`− 1 = −χ(S) ≥ deg(S) ≥ `,
which gives a contradiction. �

Under the stronger assumption that A and B are locally indicable, Howie [How82] showed
that A ? B/〈〈w〉〉 is locally indicable if and only if it is torsion-free and if and only if w is
not a proper power. It is natural to ask for an analog, replacing local indicability by
right-orderability, and Corollary 6.1 gives a partial implication.

Question 6.2. If A and B are right-orderable, and w ∈ G = A ? B is not conjugate into
A or B and is not a proper power. Is G/〈〈w〉〉 torsion-free? Is it right-orderable?
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