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We study stable commutator length (scl) in free products via surface maps into a
wedge of spaces. We prove that scl is piecewise rational linear if it vanishes on each
factor of the free product, generalizing a theorem of Danny Calegari [4]. We further
prove that the property of isometric embedding with respect to scl is preserved
under taking free products. The method of proof gives a way to compute scl in
free products which lets us generalize and derive in a new way several well-known
formulas. Finally we show independently and in a new approach that scl in free
products of cyclic groups behaves in a piecewise quasi-rational way when the word
is fixed but the orders of factors vary, previously proved by Timothy Susse, settling
a conjecture of Alden Walker.
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1 Introduction

Let G be a group and g be an element of the commutator subgroup [G,G]. The commuta-
tor length of g, denoted cl(g), is the minimal number n such that
g = [a1, b1][a2, b2] · · · [an, bn] for some ai, bi ∈ G, and the stable commutator length
of g, denoted scl(g), is the limit limn→∞ cl(gn)/n which always exists by subadditivity.

It is obvious from the definition that scl has the following basic properties:

(1) monotone: for any homomorphism φ : G → H and g ∈ [G,G], we have
sclG(g) ≥ sclH(φ(g));

(2) characteristic: for any φ ∈ Aut(G) and g ∈ [G,G], scl(g) = scl(φ(g)).

It follows that the spectrum, the set of values that sclG takes, is a group invariant.
However, scl is notoriously difficult to compute unless it is known to vanish. Thus
many interesting questions about the spectrum are extremely hard to answer.

http://www.ams.org/mathscinet/search/mscdoc.html?code=57M07,(20E06, 20F65, 52C07)
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1.1 Main results

Gromov [13] asked whether the spectrum is rational (or perhaps algebraic) when G is
finitely presented. A counter-example was found by Zhuang [17]. On the other hand,
Calegari [3] showed that scl is rational and can be computed efficiently in a free group
by interpreting and studying scl in terms of surface maps. He later showed in [4] that
a modification of the geometric argument proves rationality of scl in free products of
abelian groups. We generalize this latter result, substantially weakening the assumption
that the factors are abelian.

Theorem A (Rationality) For G = ∗λGλ with sclGλ
≡ 0 for each λ, scl is piecewise

rational linear in G.

This holds, for example, when all Gλ are amenable. See Remark 4.10 for a list of
groups having vanishing scl.

A homomorphism φ : G → H for which sclH(φ(c)) = sclG(c) for all chains c (see
Section 2) is said to be isometric for scl. Injections admitting a retraction are isometric.
It is shown by Calegari–Walker [8] that random homomorphisms between free groups
are isometric for scl. In this paper, we show that isometric embeddings (meaning
injective and isometric) are preserved under taking free products:

Theorem B (Isometric Embedding) If fλ : Hλ → Gλ is a family of isometric
embeddings, then so is the induced map f : ∗λHλ → ∗λGλ .

A spin-off of the techniques used in the proof is a new method to compute scl; we give
examples in Section 5.

In particular, these techniques give new insights for scl in families. It was proved by
Calegari–Walker [7] that for free products of free abelian groups, certain families of words
w(n) (called surgery families) are eventually quasi-rational in n. A similar question was
studied by Walker. For any fixed rational chain c in Fn , and any ooo = (o1, o2, . . . , on) with
oi ≥ 2, let cooo be the image of w under the natural homomorphism φ : Fn → ∗iZ/oiZ.
How does scl(cooo) vary as a function of ooo?

It was observed experimentally by Walker [16] that scl(cooo) exhibits interesting periodic
behavior, and he conjectured that the result is piecewise quasi-linear in 1/oi (see
Conjecture 6.1). In Section 6 we give a counter-example, but prove a weaker version:
scl(cooo) is piecewise quasi-rational in ooo (see Theorem 6.4). It was pointed out by
Timothy Susse that he had proved this weaker version earlier in [14, Corollary 4.14]
using a different approach.
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It is worth mentioning that the method in this paper can be used to generalize and give
a new approach to the spectral gap theorem by Duncan–Howie [12], which will be
discussed in another paper [10].

1.2 Contents of paper

We first give basic definitions in Section 2. Then in Section 3 we introduce a way,
following [4], to use a finite dimensional polyhedral cone to encode surface maps into a
wedge of spaces with given boundary information. The encoding loses information, so
in Section 4 we study a nonlinear optimization problem on the fibers. This reduces the
computation of scl to a lattice point problem, which we solve, deducing Theorem A
and Theorem B. When scl vanishes in each factor, the non-linearity comes from disk
vectors, which become complicated compared to the abelian case discussed in [4]. In
Section 5, we apply our method to give generalizations and new proofs of old results,
where we also prove a formula conjectured by Alden Walker in [16]. Finally in Section
6 we give a counter-example to Walker’s conjecture and prove a weaker version.

1.3 Acknowledgment

The author thanks his advisor Danny Calegari for insightful introduction to this topic.
The author also thanks Timothy Susse and Alden Walker for useful conversations.
Finally the author thanks the referees for nice suggestions improving the paper.

2 Background

In this section we give the definitions and basic facts about scl that we will use. All of
these can be found in [5].

Definition 2.1 Let S be a compact surface. Define

χ−(S) =
∑

i

min(0, χ(Si))

where Si are the components of S and χ is the Euler characteristic. Equivalently, χ−(S)
is the Euler characteristic of S after removing disk and sphere components.
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Definition 2.2 Let gj ∈ G (1 ≤ j ≤ k) be elements that sum to 0 in H1(G;R). Let K
be a K(G, 1). For all j, let γj : S1 → K be a loop representing the conjugacy class of gj

and L = tjS1 . A compact oriented surface S together with a map f : S→ K is called
admissible of degree n(S) ≥ 1 if the following diagram commutes

∂S i−−−−→ S

∂f
y f

y
L

tγj−−−−→ K
where i is the inclusion map and ∂f∗[∂S] = n(S)[L].

Define

scl(g1 + g2 + · · ·+ gk) = inf
S

−χ−(S)
2n(S)

over all admissible surfaces.

If k = 1, the geometric definition agrees with the algebraic one [5, Proposition 2.10].
We (informally) say a surface map is efficient if −χ−(S)/2n(S) is close to scl(

∑
gi).

Remark 2.3 A priori the degrees on different components of ∂S could have opposite
signs. Such an admissible surface can be replaced by another one that is at least as
efficient as S , by taking suitable finite covers and gluing components with opposite
orientations together. Thus one may restrict attention to monotone admissible surfaces,
ie ∂f is orientation preserving on each component [5, Proposition 2.13].

Recall the complex of real group chains (C∗(G;R), ∂) whose homology is H∗(G;R),
the real group homology of G. In the sequel, we write B1(G) for B1(G;R), the
1-boundaries. scl is defined on integral 1-boundaries, and has a unique continuous linear
extension to a pseudo-norm on B1(G), which vanishes on

H(G) := spanR
〈
ng− gn, g− hgh−1〉 ≤ B1(G),

so scl descends to a pseudo-norm on the quotient. See [5] for details.

Definition 2.4 Define BH
1 (G) = B1(G)/H(G). We say scl is piecewise rational linear

if it is piecewise rational linear on every finite dimensional rational subspace of BH
1 (G).

We say a group homomorphism f : G1 → G2 is an isometric embedding if f is injective
and the induced map f : BH

1 (G1)→ BH
1 (G2) preserves scl, ie sclG1(c) = sclG2(f (c)) for

all c ∈ BH
1 (G1).

The simplest isometric embeddings come from retracts.
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Proposition 2.5 If i : H → G and r : G→ H are group homomorphisms such that
r ◦ i = idH , then i is an isometric embedding.

This follows immediately from monotonicity of scl.

Remark 2.6 In particular, the calculation of scl in a free product of infinitely many
groups reduces to computations in the free product of finitely many groups.

3 Encoding Surface Maps as Vectors

In this section, we introduce the method from [4] to encode admissible surface maps
into a wedge of spaces as vectors in a finite dimensional rational polyhedron.

In the sequel, fix G = A ∗ B to be a free product of two groups A and B. Since every
finite dimensional rational subspace of BH

1 (G) is a rational subspace of 〈Z〉 ∩ BH
1 (G),

for some finite subset Z of nontrivial conjugacy classes in G, we fix such a Z and study
the restriction of scl to 〈Z〉 ∩ BH

1 (G). We assume that there are no torsion elements in Z
since ng = gn = 1 in BH

1 (G) if g is of order n.

Let KA and KB be a K(A, 1) and K(B, 1) respectively, and then K = KA ∨ KB is a
K(G, 1) with wedge point ∗. By choosing appropriate loops to represent elements of Z ,
we get an oriented closed 1-manifold L (one component for each element of Z ) together
with a map Γ : L→ K such that for each component Li :

(1) either Γ(Li) is disjoint from ∗ and thus contained entirely in KA or KB (referred
to as self loops);

(2) or Γ−1(∗) ∩ Li cuts Li into finitely many intervals, each mapped alternately to a
based loop in one of KA and KB .

Therefore, L\Γ−1(∗) has finitely many components, each taken to a loop contained in
one of KA and KB (See Figure 1). Let T(A) and T(B) be the set of components taken to
KA and KB respectively.

Now for any surface f : S → K without sphere component and admissible for an
integral class in 〈Z〉 ∩ BH

1 (G), we may assume up to a homotopy that ∂f : ∂S→ L is a
(possibly disconnected) covering map, and assume f is transverse to ∗, ie F := f−1(∗)
is a finite disjoint union of embedded loops and proper arcs. We may also assume (by
Remark 2.3) ∂f : ∂S→ L is orientation preserving on each component .

We can eliminate loops in F by repeating the following procedure: eliminate all
null-homotopic loops in F by homotopy (innermost first), and then compress an
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L

a0

a1

b1

a2b2

a3

b3

Figure 1: The 1-manifold L when Z = {a0, a1b1a2b2a3b3}; the component on the left is a
self-loop.

essential loop in F . This procedure does not increase −χ−(S), does not create sphere
components, and must terminate after finite repetitions since the number of loops in F
decreases. Each proper arc in F is essential in S since ∂f is a covering. So from now
on, we assume that F consists of (essential) proper arcs.

Let SA and SB be f−1(KA) and f−1(KB) respectively, and we focus on SA in the rest of
this section.

Now SA is a surface that

(1) possibly has corners,

(2) has no sphere component,

(3) and each component of ∂SA either covers a self loop mapped to KA , or can be
decomposed into arcs alternating between those mapped to ∗ (components of F )
and those mapped to elements in T(A) (See Figure 2).

Let SA be the set of surface maps to KA satisfying the conditions above.

Note that the corners of SA are exactly F∩∂S , so the orbifold Euler characteristic of SA

χo(SA) := χ(SA)− 1
4

#(corners) = χ(SA)− 1
2

#(components of F).

Since S can be obtained by gluing SA and SB along F , we have

χ(S) = χo(SA) + χo(SB).

Also note that each component of F with orientation induced from SA goes from one
element of T(A) to another, and thus can be encoded as an ordered pair of these two
elements of T(A). Although elements of T(A) corresponding to self loops do not appear
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SB

b1
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b2

b2

b3

b3

1

2

3
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56

Figure 2: An example of SA and SB ; components of F are labeled by numbers and arcs with the
same label are identified after gluing.

in this way, it is convenient to encode a component of ∂SA that covers a self loop τ
with degree n as n(τ, τ ). Thus we define

T2(A) = {(τ, τ ′) ∈ T(A)2|τ = τ ′ if one of them cooresponds to a self loop}.

Let C1(A) and C2(A) be the R-vector spaces with bases T(A) and T2(A) respectively.
Then we can encode the surface SA as a vector v(SA) in C2(A) as follows: each
component of F is encoded as an element of T2(A) described as above, each component
of ∂SA that covers some self loop τ with degree n is encoded as n(τ, τ ), and v(SA) is
defined to be the sum of these vectors in C2(A).

Obviously, v(SA) is a non-negative integer vector in C2(A), and it satisfies two more linear
constraints. Define a (rational) linear map ∂ : C2(A) → C1(A) by ∂(τ, τ ′) = τ − τ ′ .
Then ∂ ◦ v(SA) = 0 since every boundary component of SA closes up. Define
h : C2(A)→ H1(A)⊗ R by h(τ, τ ′) = 1

2 (τ + τ ′), where H1(A) is the abelianization of
A. Then h ◦ v(SA) is just the image of [∂SA] in H1(A;R), which is 0 since it bounds SA .

Definition 3.1 Let VA be the convex rational polyhedral cone of non-negative vectors
v ∈ C2(A) satisfying ∂(v) = 0 and h(v) = 0.

The discussion above shows that v(SA) is an integer vector in VA for any SA ∈ SA .
Conversely, for any integer vector v ∈ VA , since ∂(v) = 0, the sum

∑ 1
2 (τ + τ ′)

actually defines an integral homology class in H1(A;Z), whose image under H1(A;Z)→
H1(A;Z)⊗ R ∼= H1(A;R) is h(v) = 0. Hence there is a positive integer n such that the
integral homology class given by nv is trivial and thus bounds some (actually many)
surface(s) in SA . The same thing holds for rational vectors in VA . We summarize this
as a lemma for later use.
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Lemma 3.2 ([4]) The vector v(SA) is integral in VA . Conversely, for any rational
vector v ∈ VA , there is an integer n ≥ 1 such that nv = v(SA) for some SA ∈ SA .

Such an encoding reduces the huge space of admissible surfaces to a finite dimensional
space. However, this reduction comes at a cost. There are many different surfaces SA

encoded as the same v(SA). Thus we are led to the following optimization problem:
given v, a rational vector in VA , what is the infimum of −χo(SA)/n(SA) over all surfaces
SA with v(SA) = n(SA)v for some n? We address this in the next section.

4 Nonlinear Optimization

Now we study the optimization problem discussed above. We follow [4], except that
there are significant new issues because the factors are non-abelian. The key observation
is Lemma 4.7.

Definition 4.1 For any rational vector v ∈ VA , define

χo,A(v) = sup
{
χo(SA)

n

∣∣∣∣ v(SA) = nv for some n ∈ N, SA ∈ SA

}
.

As we saw in Section 3, χo(SA) = χ(SA) − 1
2 #(components of F). The number of

components of F is a linear function |v| in v(SA) defined as follows: on the basis,
|(τ, τ ′)| is 1 if τ 6= τ ′ , and is 0 if otherwise; then extend by linearity. Notice that |v| is
just the L1 norm if there is no self loop.

Therefore,

(4–1) χo,A(v) = −1
2
|v|+ sup

{
χ(SA)

n

∣∣∣∣ v(SA) = nv for some n ∈ N
}
.

Note that the second term is quite similar to the definition of −2 · scl, but SA could
have disk components and ∂SA could be admissible for different chains in BH

1 (A). We
first deal with disk components.

4.1 Disk Vectors

Definition 4.2 We call v ∈ VA a disk vector if v encodes some disk. Denote the set of
disk vectors by DA . For v ∈ VA , we say v = v′ +

∑
tidi is an admissible expression if

v′ ∈ VA , ti ≥ 0 and di ∈ DA . Define

κA(v) = sup
{∑

ti
∣∣∣ v = v′ +

∑
tidi is an admissible expression

}
.
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Roughly speaking, κA(v) is the maximal “number” of disk vectors that can be subtracted
from v. In the case where scl vanishes on BH

1 (A), we have the following lemma.

Lemma 4.3 If scl vanishes on BH
1 (A), then χo,A(v) = −1

2 |v|+ κA(v) for any rational
vector v ∈ VA .

Proof This is equivalent to showing that

sup
{
χ(SA)

n

∣∣∣∣ v(SA) = nv for some n ∈ N
}

= κA(v)

by equation (4–1). Suppose v(SA) = nv for some n ∈ N, and let D1, . . . ,Dk be the
disk components of SA and SA = S′A t (tDi). Then χ(SA) = χ−(SA) + k ≤ k and
v = v(S′A)/n +

∑
v(Di)/n is an admissible expression. Then κA(v) ≥ k/n and thus

χ(SA)/n ≤ κA(v). This proves the “≤” direction.

Conversely, for any given ε > 0, there is an admissible expression v = v′ +
∑

tidi

where |κA(v) −
∑

ti| < ε. We may assume that each ti is rational, and then v′ is
also rational since v is. Hence there is an integer n ≥ 1 such that each nti is an
integer and nv′ = v(S′A) for some S′A by Lemma 3.2. Now ∂S′A defines a chain
c in B1(A) where scl vanishes. Thus we can find some S′′A such that ∂S′′A = Nc,
v(S′′A) = Nv(S′A) = Nnv′ and | − χ−(S′′A)/N| < ε. Also find disks Di such that
v(Di) = di , and take Nnti copies of Di for each i. Finally take SA to be the
disjoint union of all these disks and S′′A . Then v(SA) = Nnv′ + Nn

∑
tidi = Nnv and

χ(SA)/Nn = χ(S′′A)/Nn +
∑

ti ≥ χ−(S′′A)/Nn + (κA(v)− ε) ≥ −ε/n +κA(v)− ε. Since
ε is arbitrary, this proves the other direction.

This motivates the study of κA(v) since |v| is already linear on VA .

Recall the following standard notions that we will use. In a vector space X , the convex
hull of a subset E , denoted by conv(E), is the smallest convex set containing E . The
Minkowski sum of two subsets E and F is the set

E + F := {x + y| x ∈ E and y ∈ F}.
A function f defined on a convex subset E ⊂ X is concave if f (λx + (1 − λ)y) ≤
λf (x) + (1− λ)f (y) for any λ ∈ [0, 1] and any x, y ∈ E . Finally, a function f defined
on a cone C ⊂ X centered at the origin is homogeneous if f (λx) = λf (x) for all λ ≥ 0
and x ∈ C .

The following lemma is the same as [4, Lemma 3.10]. The proof is standard, so we
omit it.

Lemma 4.4 The function κA is a non-negative concave homogeneous function on VA .
The subset of VA on which κA = 1 is the boundary of conv(DA) + VA in VA .
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4.2 Key Observation

Now we are coming to the key observation that makes it possible to generalize the result
in [4] to our rationality theorem.

In [4], essentially using that A is free abelian, DA is determined explicitly as integer
points lying in some open faces of VA . Then conv(DA) + VA , which is a subset of VA , is
shown to be a finite sided rational convex polyhedron using such an explicit description
of DA , which also produces an effective algorithm to compute scl in that case. However,
the set DA of disk vectors could be very complicated and hard to determine explicitly
in general.

The following example illustrates how complicated DA could be, even when A is the
simplest non-abelian group. The study of this example was initiated in an unpublished
note by Timothy Susse [15], who did computer experiments and gave conjectural
pictures of the result.

Example 4.5 Let A = H3(Z) = 〈x, y, z | z = [x, y], [x, z] = [y, z] = 1〉 be the 3-
dimensional Heisenberg group, which is 2-step nilpotent, and [A,A] = 〈z〉. Suppose
T(A) = {a, b, c} for some a, b, c ∈ A\{id} such that abc = zm for some m ∈ Z, which
occurs if we consider g = aαbβcγ ∈ [G,G] with G = A ∗B and α, β, γ in some group
B.

Let us look at a 2-dimensional subcone of VA spanned by P = (a, b) + (b, c) + (c, a)
and N = (a, c) + (b, a) + (c, b), and find all (u, v) ∈ Z2

+ such that uP + vN is a disk
vector. For fixed (u, v), the vector uP + vN is a disk vector if and only if there is some
cyclic word w in a, b, c such that

(1) w represents id in A;

(2) w contains u copies of each of ab, bc, ca and v copies of ac, cb, ba as subwords.

Notice that since abc = zm , the element a commutes with bc and cb, and similarly for
b and c; we also have [a, b] = [b, c] = [c, a] = zn for some n. Any cyclic word with
equal number (say, k) of a, b, c in it can be written uniquely as (abc)k[a, b]r for some
r ∈ Z by moving letters around. One can prove by induction (see Appendix) that for
fixed (u, v), and the set of cyclic words satisfying the restriction (2) above, the set of r
that can appear is

(4–2) Su,v =


[− v(v+1)

2 , v(v−3)
2 ] ∩ Z u = v

[− v(v+1)
2 , v(v−1)

2 ] ∩ Z u > v
[−u(u+1)

2 − v, u(u−1)
2 − v] ∩ Z u < v.
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Figure 3: Disk vectors in a subcone of VA with A = H3(Z)

Therefore, uP+vN is a disk vector if and only if (abc)u+v[a, b]r = id for some r ∈ Su,v ,
or equivalently m(u + v) + nr = 0 has a solution for r ∈ Su,v . For example if m

n = 1
2 ,

the set of (u, v) for which uP + vN is a disk vector is{
(u, v) ∈ Z2

+

∣∣ 1 ≤ v ≤ u ≤ v2 or u < v ≤ u2; and u ≡ v mod 2
}
,

which is the set of integer points in the shaded region in Figure 3, bounded by two
parabolas, such that the two coordinates have the same parity.

Nevertheless, Corollary 4.9, a consequence of our key Lemma 4.7, shows that conv(DA)+
VA is always a finite sided rational convex cone no matter how complicated DA is. The
key reason is that an integer point in a rational cone cannot be too close to a given face
unless it lies on that face.

We first recall some standard definitions.

Definition 4.6 A convex polyhedral cone in Rn is a set C = {x|fi(x) ≥ 0, ∀i ∈ I},
where each fi : Rn → R is a linear map and I is finite. In addition, C is rational if fi ’s
can be chosen to be rational. We say C is simplicial if fi ’s can be chosen to be linearly
independent in (Rn)∗ , or equivalently, C is the convex cone spanned by some linearly
independent vectors.
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Similarly, a convex polyhedron in Rn is a set P = {x|fi(x) ≥ αi, ∀i ∈ I}, where each
fi : Rn → R is a linear map, each αi is real, and I is finite. In addition, P is rational if
fi ’s and αi ’s can be chosen to be rational.

It follows that if C is simplicial and rational, then C is the convex cone spanned by
some linearly independent rational vectors. Here is the key observation.

Lemma 4.7 Let C be a rational polyhedral cone in Rn , and D be a subset of C∩( 1
L ·Z)n

for some L ∈ Z+ . Then there is a finite subset D′ of D such that D + C = D′ + C .

Proof The claim is trivially true if D is empty. From now on we assume D to be
nonempty. We first reduce the problem to the case where C is simplicial. Decompose
C = ∪Ci as the union of finitely many simplicial rational cones Ci , i = 1, . . . , k .
Suppose the claim is true for simplicial rational cones. Letting Di = D∩Ci and applying
the claim to each pair (Ci,Di), we get some finite sets D′i such that D′i + Ci = Di + Ci .
Now let D′ = ∪D′i . It suffices to show that D + C ⊂ D′ + C . Actually, for each point
d + c ∈ D + C where d ∈ D and c ∈ C , we have d ∈ Di for some i since D = ∪Di .
Now Di ⊂ Di + Ci = D′i + Ci , so there exists d′ ∈ D′i ⊂ D′ and c′ ∈ Ci ⊂ C such that
d = d′ + c′ , and thus d + c = d′ + (c′ + c) lies in D′ + C .

Therefore, we only need to show the claim for any simplicial rational cone C , which
can be further reduced as follows to the case where C is the first orthant of Rn . Let ci ,
i = 1, . . . , k , be the linearly independent rational vectors that span C . Extend this to a
rational basis of Rn and take a linear transformation f of Rn by sending ci to ei , where
{ei}n

i=1 is the standard basis. In terms of matrices (with respect to the basis ei ), f is an
n× n matrix with rational entries. Let N be the lcm of the denominators of the entries.
Then the image of ( 1

L · Z)n under f lies in ( 1
LN · Z)n , so f (D) is a subset of ( 1

LN · Z)n .

Thus we only need to show the claim for

C = {x = (x1, . . . , xn)|xi ≥ 0, i = 1, . . . , k; xi = 0, i > k}.

Up to applying the map v 7→ Lv (our statement is irrelevant to the scale), we assume
without loss of generality that L = 1 in the sequel, ie D lies in the integer lattice. Now
we may ignore ei for i > k . Thus we assume without loss of generality that C is the
first orthant of Rn and proceed by induction on the dimension n (note that n is actually
the dimension of C , not of the underlying space we started with). See Figure 4 for an
illustration of our induction in a special case.

The base case n = 1 is obvious. For the inductive step, fix any i ∈ {1, . . . , n}, and let
Fi = {x ∈ C|xi = 0} be the i-th face of C and pi be the projection from C to Fi . Let
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D′1

D′′1

D′2
D′′2

Figure 4: An illustration of our induction argument in the case n = 2 and C = R2
≥0 . The dots

are points in D and the crosses on the axes are D1 and D2 ; the red crosses are D′1 and D′2 ,
whose lifts are D′′1 and D′′2 . The shaded region D′′ + C contains the majority (black dots) of D ,
so we can take D′ to be the red dots.

Di = pi(D), which lies in the integer lattice and Fi . Thus by the induction hypothesis
(applied to (Fi,Di)), there is a finite set D′i ⊂ Di such that D′i + Fi = Di + Fi . For
each x′ ∈ D′i , choose some x′′ ∈ D such that pi(x′′) = x′ . Hence there is a finite set
D′′i ⊂ D which projects to D′i under pi . Note the following simple but crucial fact: for
any x, y ∈ C , if yi ≥ xi , then y lies in x + C if and only if pi(y) ∈ pi(x) + Fi . Thus if we
take Mi = max{xi|x ∈ D′′i }, then for any point y with yi ≥ Mi , we have y ∈ D′′i + C
if and only if pi(y) ∈ D′i + Fi = Di + Fi . Therefore, if yi ≥ Mi and y ∈ D, then
pi(y) ∈ Di ⊂ Di + Fi , which means y ∈ D′′i + C . In other words, if y ∈ D\(D′′i + C),
then 0 ≤ yi < Mi .

Now let i range from 1 to n and take D′′ = ∪D′′i . By what we showed above, if
y ∈ D\(D′′ + C) = D\[∪(D′′i + C)], then 0 ≤ yi < Mi for each i. Hence D\(D′′ + C)
is a bounded subset of Zn and therefore finite. Take D′ = D′′ ∪ [D\(D′′ + C)], and the
claim follows.

Corollary 4.8 Let C and D be as in Lemma 4.7. Then conv(C + D) = conv(D) + C
is a (closed) rational polyhedron.
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Proof We have conv(C + D) = conv(D) + C since the Minkowski sum commutes
with taking convex hull and C is convex. The same consideration and Lemma 4.7
implies conv(C + D) = conv(C + D′) = conv(D′) + C . Now conv(D′) + C is a rational
polyhedron since it is the Minkowski sum of two rational polyhedra (see for example
the proof of [1, Theorem 3.5]).

Applying this to C = VA and D = DA , we get the following corollary.

Corollary 4.9 For any G = A ∗ B and Z as in the setup in Section 3, the set
conv(DA) + VA is a (closed) rational polyhedron. Thus κA is the minimum of finitely
many rational linear functions. If scl vanishes on BH

1 (A), then χo,A (originally defined
on rational vectors in VA ) has a (unique) continuous extension κA− | · |/2, which is the
minimum of finitely many rational linear functions.

Proof The first assertion follows immediately from Corollary 4.8. Let {fi|i ∈ I} be a
finite subset of rational linear functions defining the rational polyhedron conv(DA) + VA

such that each {fi = 1} contains some top-dimensional face of the boundary of
conv(DA) + VA in VA . Combining with Lemma 4.4, we have κA(x) = min

i
{fi(x)}.

Combining with Lemma 4.3, we get the last assertion.

4.3 Rationality Theorem

Corollary 4.9 generalizes [4, Lemma 3.12] by weakening the assumption “(free) abelian”
to “scl vanishes”. Now following the argument in [4], we get our first main result:

Theorem A (Rationality) If Gλ (λ ∈ Λ) is a family of groups where scl vanishes on
each Gλ , then scl is piecewise rational linear on the free product G = ∗λGλ .

Given Corollary 4.9, the proof is the same as that in [4]. We include it for completeness.

Proof We first focus on the case of G = A ∗ B.

As in Section 3, fix a finite subset Z of nontrivial conjugacy classes in G and define the
1-manifold L . Also let T2(A), VA and χo,A be as above, and similarly define these for B.
Let Y ⊂ VA×VB be the set of pairs (vA, vB) that can be “glued up”: for any (τ, τ ′) ∈ T2(A)
with τ not a self-loop (then neither is τ ′ ), there is a unique (σ, σ′) ∈ T2(B) such that
σ′ is the oriented arc in the 1-manifold L following τ , and τ ′ follows σ ; we require
the (τ, τ ′)-coordinate of vA equals the (σ, σ′)-coordinate of vB for any such (τ, τ ′)
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and (σ, σ′). Then Y is still a rational cone. Define χo(vA, vB) = χo,A(vA) + χo,B(vB)
for any (vA, vB) ∈ Y . Then by Corollary 4.9, χo is the minimum of finitely many
rational linear functions. Finally define d : Y → H1(L) to be the unique rational linear
map that d(y) = ∂f∗(∂S) in H1(L) whenever y = (v(SA), v(SB)) ∈ Y for some surface
S = SA + SB .

Now for any l ∈ H1(L) that corresponds to a chain z ∈ 〈Z〉∩BH
1 (G), let Yl = d−1(l) ⊂ Y .

Then we have

(4–3) scl(z) = −max
y∈Yl

χo(y)/2.

Notice that Yl is a finite sided convex polyhedron since Y is, and it is rational if l is.
Now χo(y) = min fi(y) for some finite collection of rational linear functions fi . Then
maximizing χo(y) for y ∈ Yl can be solved by introducing a slack variable z and
maximizing z subject to the rational linear constraints z ≤ fi(y) and y ∈ Yl . This is
a linear programming problem in (y, z). Then it follows that scl is piecewise rational
linear on 〈Z〉 ∩ BH

1 (G). Since Z is arbitrary, the conclusion follows.

For the general case, since every rational subspace only involves finitely many factors,
it suffices to show that the conclusion holds when Λ is finite according to Remark 2.6.
Now if Λ is finite, we can build K(G, 1) by gluing up K(Gλ, 1)’s so that no three factors
are attached at the same point. This guarantees that the transversality argument we used
to cut the surfaces still apply and that the surfaces SGλ

are glued up in a simple way.
Then define T2(Gλ), VGλ

and χo,Gλ
as before. Similarly define Y by writing down the

suitable gluing condition. Then the same argument above shows that scl is piecewise
rational linear.

Remark 4.10 Many groups have vanishing scl. There are three main sources:

(1) small groups such as amenable groups, which include finite groups and solvable
groups;

(2) irreducible lattices of higher rank Lie groups (see [5, Theorem 5.26] for a precise
statement);

(3) some transformation groups such as Homeo+(S1) [5, Theorem 2.43], subgroups
of PL+(I) [6, Theorem A], Homeoc(Rn), and Thompson–Stein groups Tp,q with
gcd(p− 1, q− 1) = 1 (see [17, Lemma 3.6] or [5, Lemma 5.15]).

Remark 4.11 The proof actually gives a method to determine scl in free products
when scl vanishes on each factor. It produces an algorithm as long as one can determine
the vertices of the convex cone conv(VAλ

+DAλ
), which seems hard in general since it

requires some knowledge of DAλ
. The method, however, is still helpful to study scl in

families.



16 Lvzhou Chen

Remark 4.12 When considering Yl , it is redundant in the following sense to impose
h = 0 in the definition of VA (see Definition 3.1). If we define V ′A to be non-negative
vectors v ∈ C2(A) satisfying ∂(v) = 0, then VA is the sub-polyhedral cone of V ′A on
which h = 0. We can similarly define Y and the linear map d using V ′A instead of
VA , and denote them by Y ′ and d′ . It turns out that if l ∈ H1(L) corresponds to a
homologically trivial chain in B1(G), then d′−1(l) ⊂ Y ′ coincides with Yl .

Corollary 4.13 Let fλ : Aλ → Bλ be a family of injective group homomorphisms.
If scl vanishes on each Aλ and Bλ , then the induced map f : ∗λAλ → ∗λBλ is an
isometric embedding with respect to scl. More precisely, for any c ∈ BH

1 (∗λAλ), we
have scl(c) = scl(f (c)).

Proof Again this reduces to the case of finitely many factors. Now run the process
above on both sides using V ′Aλ

and V ′Bλ
as in Remark 4.12 instead of VAλ

and VBλ
.

Then fλ induces a bijection between T(Aλ) and T(Bλ) and similarly between T2(Aλ)
and T2(Bλ). These give rise to an isomorphism (fλ)∗ between C2(Aλ) and C2(Bλ) that
takes V ′Aλ

to V ′Bλ
isomorphically. The map (fλ)∗ may not restrict to an isomorphism

between VAλ
and VBλ

when the induced map of fλ on group homology is not injective.
Injectivity of fλ ensures that (fλ)∗ restricts to a bijection between DAλ

and DBλ
, and

thus κAλ
is the pull back of κBλ

by (fλ)∗ . Then the computation of scl on two sides are
results of the same linear programming problem, so f is isometric for scl.

The condition that scl vanishes on each Aλ and Bλ ensures that each fλ is isometric.
Thus it is natural to ask whether it is enough to get the conclusion only assuming each
fλ to be an isometric embedding. Our second main result confirms this. To prove it, we
will reveal how scl in free products is determined when scl does not necessarily vanish
on each factor.

4.4 Scl in General Free Products

Now we return to the general case. Similar to the special case discussed above, we need
an analog of Lemma 4.3 to reveal the structure of χo,A(v). Unlike the case where scl
vanishes on factors, the second term on the right hand side of equation (4–1) cannot be
computed via κA as in Lemma 4–1 any more. With notations as before and DA defined
as in Definition 4.2, we make the following definition.

Definition 4.14 For any rational v ∈ VA , define

psclA(v) := inf
{
−χ−(SA)

2n

∣∣∣∣ v(SA) = nv for some n ∈ N
}
.
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Let coneQ(DA) := {
∑

tidi|ti ∈ Q, ti ≥ 0, di ∈ DA}. Equivalently, coneQ(DA) is the
set of rational points in cone(DA). We use the convention that coneQ(DA) = {0} if
DA = ∅. For any x ∈ coneQ(DA), define

ηA(x) := sup
{∑

ti
∣∣∣ x =

∑
tidi with ti ∈ Q, ti ≥ 0, di ∈ DA

}
.

Lemma 4.15 For any rational v ∈ VA , we have

χo,A(v) = −1
2
|v|+ sup {−2psclA(v− d) + ηA(d)| d ∈ coneQ(DA), v− d ∈ VA}

≤ −1
2
|v|+ κA(v).

Proof We first prove the equality in a similar way as we did for Lemma 4.3. Let

L = sup {χ(SA)/n| v(SA) = nv for some n ∈ N} ,

R = sup {−2psclA(v− d) + ηA(d)| d ∈ coneQ(DA), v− d ∈ VA} .

By equation (4–1), we just need to show L = R.

On the one hand, if v(SA) = nv, let D1, . . . ,Dk be the disk components of SA and
SA = S′A t (tDi). Then

χ(SA) = χ−(S′A) + k ≤ −2npsclA(v− d) + k ≤ −2npsclA(v− d) + nηA(d)

where d =
∑

v(Di)/n. This proves L ≤ R.

On the other hand, for any given ε > 0, there exists d ∈ coneQ(DA) such that
v′ = v− d ∈ VA and −2psclA(v′) + ηA(d) > R− ε. Then we can write d =

∑
tidi with

ti nonnegative rational and di ∈ DA such that
∑

ti > ηA(d)− ε. There also exist an
integer n ≥ 1 and a surface S′A such that v(S′A) = nv′ and χ−(S′A)

2n > −psclA(v′)− ε. Up
to replacing S′A by a bunch of copies of itself, we may assume that each nti is an integer.
Now take disks Di such that v(Di) = di . Take nti copies of Di for each i and let SA be
the disjoint union of these disks together with S′A . Then v(SA) = nv′ + n

∑
tidi = nv

and
χ(SA)

n
=
χ(S′A)

n
+
∑

ti ≥
χ−(S′A)

n
+
∑

ti > −2psclA(v′) + ηA(d)− 3ε > R− 4ε.

This shows L ≥ R and finishes the proof of the equality part.

To show the inequality, suppose d ∈ coneQ(DA) and v− d ∈ VA . For any ε > 0, we
can write d =

∑
tidi such that ηA(d) <

∑
ti + ε. Thus the admissible expression

v = (v− d) +
∑

tidi shows

κA(v) ≥
∑

ti > ηA(d)− ε ≥ −2psclA(v− d) + ηA(d)− ε.

Since ε is arbitrary, the desired inequality holds.
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Now we can describe how scl is determined in general free products. Let G = ∗iGi be
the free product of finitely many groups. Consider a finite set Z of conjugacy classes
(without torsion elements) in G and build the 1-manifold L as before. Define VGi , DGi ,
ηGi and psclGi

as above. Then define Y , as in the proof of Theorem A, to be the rational
polyhedron in

∏
VGi consisting of tuples of vectors from VGi that can be “glued up”,

and define χo (only for rational points in Y ) to be the sum of χo,Gi evaluated on the
i-th coordinate. Now for any rational l ∈ H1(L) that corresponds to a rational chain
z ∈ 〈Z〉 ∩ BH

1 (G), let Yl = d−1(l) ⊂ Y .

Lemma 4.16 With notations as above,

scl(z) = inf
rational y∈Yl

−χo(y)/2.

The proof follows exactly as before. By ignoring the contribution from scl in factor
groups, we get the following estimate:

Corollary 4.17 With notations as above,

2 · scl(z) ≥ inf
y=(vGi )∈Yl

∑
i

[
1
2
|vGi | − κGi(vGi)

]
,

and equality holds if sclGi ≡ 0 for all i.

Proof The inequality follows from Lemma 4.16 and the inequality in Lemma 4.15
together with the fact that κGi has a continuous extension to irrational points (Corollary
4.9). Using Lemma 4.3 instead of Lemma 4.15, we get the equality part.

Using Lemma 4.16, we can generalize Corollary 4.13 to our second main result.

Theorem B (Isometric Embedding) If fλ : Hλ → Gλ is a family of isometric
embeddings with respect to scl, then the induced map f : ∗Hλ → ∗Gλ is also an
isometric embedding.

Proof The proof is almost the same as that of Corollary 4.13. First reduce to finite
free products, and then apply Lemma 4.16 on both sides accordingly with V ′Hi

and
V ′Gi

instead as in Remark 4.12 to avoid assuming that fi induces an injective map on
homology. As in the proof of Corollary 4.13, each fi induces an isomorphism of V ′Hi

and
V ′Gi

that takes DHi bijectively to DGi by injectivity of fi , and thus ηHi is the pull back
of ηGi . Since fi preserves scl, we see psclHi

is the pull back of psclGi
. It follows that

χo,Hi is the pull back of χo,Gi and thus the computation of scl (for rational chains) on
both sides are obtained by solving the same optimization problem. Hence f preserves
scl.
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Remark 4.18 Alternately, one can prove this theorem in a more direct way. Here is an
outline:

Reduce to finite free products and then to the case A ∗ B → A′ ∗ B′ by induction. It
suffices to show scl(c) ≤ scl′(c′) for integral homologically trivial chains c where
c′ = f (c), scl = sclA∗B and scl′ = sclA′∗B′ . Take any surface S′ mapped into A′ ∗ B′

that approximates scl′(c′) well, and decompose it as in Section 3 into pieces SA′ and SB′ .
Disk components of SA′ “factor through” A by injectivity of A→ A′ . The boundary
of the union of other components defines a chain on A′ that can be pulled back to a
homologically trivial (for the same reason explained in Remark 4.12) chain on A with
identical scl by assumption. Then find a surface that approximates the scl of this chain
well, take a finite cover if necessary and take the union with multiple copies of the disk
components from S′A , and we obtain a surface SA with −χo(SA) ≤ m(−χo(S′A) + ε)
and such that v(SA) corresponds to mv(S′A), using the notation in Section 3. Do the
same thing for B. Then glue up SA and SB (after taking suitable finite covers) to get a
surface S mapped to A ∗ B that winds around c and is almost as efficient as S′ . Thus
scl(c) ≤ scl′(c′).

5 Applications: Generalizations and New Proofs of Old Re-
sults

In this section, we apply the isometric embedding theorem and the computational
methods we have developed to get generalizations and new proofs of old results.

We start with a simple corollary of Theorem B.

Corollary 5.1 Let gλ ∈ Gλ , G = ∗λGλ , and fλ : 〈gλ〉 → Gλ be the inclusion. Then
the induced map f : ∗λ 〈gλ〉 → G is an isometric embedding. In particular, if gλ ∈ Gλ

has order kλ , then the spectrum of sclG contains the spectrum of scl on ∗λ(Z/kλZ).
Here kλ ≥ 2 could be ∞, in which case Z/kλZ is Z; and the “spectrum” could refer
to the values scl takes on BH

1 or the commutator subgroups.

Proof Simply note that fλ is an isometric embedding even if sclGλ
(gλ) > 0: because

the definition of an isometric embedding is that fi induces an isometric map BH
1 (〈gλ〉)→

BH
1 (Gλ), and BH

1 (〈gλ〉) = BH
1 (Z/kλZ) = 0 since Z/kλZ is abelian.

Remark 5.2 Scl in free products of cyclic groups has been studied in [3], [4] and [8].
The program scallop [9] can compute scl on specific chains.
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This allows us to generalize results about the scl spectrum in free groups (or free
products of cyclic groups) to general free products. Here is an example.

Corollary 5.3 Let G = ∗λGλ (λ ∈ Λ, |Λ| ≥ 2) and suppose at least two Gλ ’s
contain elements of infinite order. Then the image of [G,G] under scl contains elements
congruent to every element of Q mod Z. Moreover, it contains a well-ordered sequence
of values with ordinal type ωω .

Proof This follows from [8, Corollary 3.19], which states that the conclusion is true
for nonabelian free groups, and our Corollary 5.1.

Now we give three examples to illustrate how Lemma 4.16 works. We first deduce the
following product formula, which was originally stated not quite correctly in [2] (but
the proof is still valid for elements of infinite order) and later corrected and proved in
[5] for the general case.

Proposition 5.4 (Product Formula) Let G = A∗B, and let a ∈ A, b ∈ B be nontrivial
elements. Suppose a and b are of order na and nb (could be∞, in which case 1/∞ = 0
by convention). Then

sclG(ab) = sclA(a) + sclB(b) +
1
2

(1− 1
na
− 1

nb
).

Proof If the image of a in H1(A;R) is not zero, then both sides are ∞ by convention,
and similarly for b. Now we assume this is not the case. Using the notations in previous
sections, letting Z = {ab}, then L is just an oriented circle, VA = {t(a, a)|t ≥ 0},
and psclA(t(a, a)) = sclA(a) by homogeneity of scl. If na is finite, then sclA(a) = 0,
DA = {kna(a, a)|k ∈ Z+} and thus ηA(t(a, a)) = t/na , χo,A(t(a, a)) = −t/2 + t/na by
Lemma 4.15. If na =∞, then DA = ∅ and coneQ(DA) = {0}, and thus χo,A(t(a, a)) =

−t/2 − 2tsclA(a) by Lemma 4.15. Then χo,A(t(a, a)) = −t/2 − 2tsclA(a) + t/na is
valid in both cases. Similarly we get χo,B . Now the “glue-up” condition on VA × VB

simply requires s = t for (t(a, a), s(b, b)), so Y = {(t(a, a), t(b, b))|t ≥ 0}. Then
the fundamental class l ∈ H1(L) corresponds to the chain ab. Thus Yl is a singleton
{((a, a), (b, b))} and χo(((a, a), (b, b))) = −1 − 2sclA(a) − 2sclB(b) + 1/na + 1/nb .
Therefore by Lemma 4.16, we get

sclG(ab) = −χo(((a, a), (b, b)))/2 = sclA(a) + sclB(b) +
1
2

(1− 1
na
− 1

nb
).
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The following self-product formula is an analog of the product formula. When B = Z
and t is the generator, it is proved in [5].

Proposition 5.5 (Generalized Self-product Formula) Let A and B be groups, x, y ∈ A
and t ∈ B be elements of infinite order. Then

sclA∗B(xtyt−1) = sclA(x + y) +
1
2
.

Proof Again both sides are ∞ if x + y is not 0 in H1(A). Thus we assume this is not
the case. The result easily follows from the original self-product formula and Theorem
B by considering id : A→ A and the inclusion i : 〈t〉 → B. But we prove it using the
computational tool above, which gives a new proof.

We apply Lemma 4.16 to calculate the left hand side. Using notations as before, if
Z = {xtyt−1}, then L is an oriented circle, and C2(B) consists of vectors of the form
vb = b11(t, t) + b12(t, t−1) + b21(t−1, t) + b22(t−1, t−1) where we encode the coefficients
into a 2× 2 matrix b = (bij). Then by the definition of V ′B (Remark 4.12), ∂(vb) = 0
requires the sum of entries in the i-th row equals that of those in the i-th column for
all i, which is b12 = b21 in this case. Similarly V ′A = {ua|a12 = a21, aij ≥ 0}, where
ua = a11(x, x) + a12(x, y) + a21(y, x) + a22(y, y). If (ua, vb) ∈ Y ′ , the glue-up condition
requires a11 = b12 , a12 = b11 , a21 = b22 and a22 = b21 . In other words, b is the
matrix we get by interchanging the columns of a. Finally (ua, vb) ∈ Yl requires in
addition that each row of b (and a) sums up to 1. Together with ∂(vb) = 0, this implies
that b12 = b21 = 1− b11 = 1− b22 .

In summary, Yl = {(uM(α), vM(1−α)) | α ∈ [0, 1]} where

M(x) =

(
x 1− x

1− x x

)
.

Now psclB(vM(1−α)) = 0 since all t and t−1 will cancel. Since t has infinite order,
DB + V ′B = {(t, t−1) + (t−1, t)}+ V ′B which implies ηB(β[(t, t−1) + (t−1, t)]) = β and
further ηB(vM(1−α)) = α . Thus χo,B(vM(1−α)) = −1 + α by Lemma 4.15. For χo,A , it
is more straightforward to use equation (4–1). Thus we have

χo(uM(α), vM(1−α)) = −2 + α+ sup{χ(SA)/n | v(SA) = n · uM(α)}.

Therefore by Lemma 4.16, we only need to show

1 + 2sclA(x + y) = inf
α∈[0,1]∩Q

{2− α+ inf{−χ(SA)/n | v(SA) = n · uM(α)}}.



22 Lvzhou Chen

Letting α = 1, we have uM(1) = (x, x) + (y, y) and thus

inf{−χ(SA)/n | v(SA) = n · uM(1)} = 2sclA(x + y)

since SA has no disk components because x and y have infinite order. This gives the
“≥” direction.

Conversely, we just need to show that 2sclA(x + y) ≤ 1− α− χ(SA)/n always holds.
In fact, since v(SA) = nuM(α) = n(1 − α)[(x, y) + (y, x)] + nα[(x, x) + (y, y)], there
are 2n(1− α) edges on the boundary of SA , mapped to the wedge point ∗, that sit in
between an x and a y. Half of these edges are from x to y (referred to as a (x, y)-edge)
and the other half are from y to x (referred to as a (y, x)-edge). Whenever we have
a (x, y)-edge and a (y, x)-edge that lie on the same boundary component, we glue a
rectangle to the surface with one edge glued to the (x, y)-edge and its opposite edge
glued to the (y, x)-edge, and let f map the rectangle to the wedge point. Such a
surgery increases −χ by 1. Repeating the process we get a new surface S′A such that
−χ(S′A) = −χ(SA) + n(1− α) and each boundary component either winds around x
several times or around y. This implies that S′A has no disk components since x and
y have infinite order and ∂S′A winds around each of x and y n-times in total. Thus
1− α− χ(SA)/n = −χ−(S′A)/n ≥ sclA(x + y). This completes the proof.

Finally we prove the following formula which was conjectured for free products of
cyclic groups and proved for G = Z ∗ (Z/mZ) by Alden Walker in [16]. It was pointed
out by Timothy Susse that in the case of free products of cyclic groups, this is equivalent
to [14, Proposition 4.1] he proved by considering certain amalgams of abelian groups.

Proposition 5.6 Let G = A ∗ B, a ∈ A\{id} and b ∈ B\{id}. Then

sclG([a, b]) =
1
2
− 1

k
,

where 2 ≤ k ≤ +∞ is the minimum of the orders of a and b.

Proof By Theorem B, we may assume A = 〈a〉 and B = 〈b〉. Let ka and kb be the
orders of a and b respectively.

Similar to the proof of Proposition 5.5, we have

Yl = {(uM(α), vM(1−α)) | α ∈ [0, 1]}

where

M(x) =

(
x 1− x

1− x x

)
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and we get

κA(uM(α)) = 1− α+
2α
ka
, κB(vM(1−α)) = α+

2(1− α)
kb

.

Therefore

−χo(uM(α), vM(1−α)) = 2− 1− 2α
ka
− 2(1− α)

kb
= 1− 2α

ka
− 2(1− α)

kb
,

which has maximum 1− 2/k for α ∈ [0, 1], and thus

sclG([a, b]) =
1
2
− 1

k
.

6 Walker’s Conjecture

Fix a rational chain c in Fn . For any ooo = (o1, o2, . . . , on) with oi ≥ 2, let cooo be the
image of c under the natural homomorphism φ : Fn → ∗iZ/oiZ. It is natural to ask:
how does scl(cooo) depend on ooo?

Based on computer experiments, Alden Walker conjectured in [16] the following
formulas:

c = aba−2b−2 + ab scl(cooo) = 2/3− {2/3, 1/2}/min(o1, o2) if min(o1, o2) ≥ 2
c = aba−3b−3 scl(cooo) = 3/4− 1/o1 − 1/o2 if min(o1, o2) ≥ 7
c = a2ba−1b−1a−2bab−1 scl(cooo) = 1/2− {2, 1}/o1 if min(o1, o2) ≥ 3
c = aba2b2a3b3a−5b−5 scl(cooo) = 1− 1

2o1
− 1

2o2
if min(o1, o2) ≥ 6

where o1 and o2 are the orders of a and b respectively, and brackets indicate that
the coefficients depend on congruence classes: for example, {2, 1}/o1 means 2/o1 if
o1 ≡ 0 mod 2 and 1/o1 if o1 ≡ 1 mod 2.

Motivated by this, Walker proposed the following conjecture:

Conjecture 6.1 (Walker [16]) For any fixed chain c in Fn , scl(cooo) is piecewise
quasilinear in 1/oi , ie there are some p ∈ Z+ , and a finite partition of Zn

≥2 , such that
on each piece, fixing any congruence class of each oi mod p, scl(cooo) is linear in 1/oi .

Computer experiments suggest that this conjecture is false.
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Example 6.2 The following formula holds conjecturally for n = 2 and c =

aba−2b−2a2b2a−1b−1 with o2/2 > o1 > 10:

scl(cooo) =


1− 3(o1−1)

o1(o1+1) o1 ≡ 1, 3, 5 mod 6
1− 3

o1
o1 ≡ 0 mod 6

1− 15
5o1+8 o1 ≡ 2 mod 6

1− 3
o1+2 o1 ≡ 4 mod 6

This is verified by the computer program scallop [9] for o2 = 100 and 10 < o1 < 50.
We see from this example that the denominator could be a higher degree polynomial in
o1 , and even when it is linear in o1 , it could be inhomogeneous.

To seriously disprove the conjecture, it suffices to verify a special case of the formula
above:

Proposition 6.3 For n = 2 and c = aba−2b−2a2b2a−1b−1 , there exist constants
r, s ≥ 1 such that when o1 = 6K + 3, o2 = 6L + 3 with L ≥ rK and K ≥ s, we have

scl(cooo) = 1− 3(o1 − 1)
o1(o1 + 1)

.

We prove the “≤” direction and give an outline of the proof for the other direction.

Proof Follow the notations in Section 4 and apply our method to G = A ∗ B with
A = Z/o1Z and B = Z/o2Z. Then T(A) = {a, a−2, a2, a−1}. Let

vA =
1

3K + 2
[(a, a−1) + (a−1, a)] +

1
3K + 2

[(a2, a−2) + (a−2, a2)]

+
K

(2K + 1)(3K + 2)
[(6K + 3)(a, a)] +

1
(6K + 3)(3K + 2)

[(6K + 3)(a−1, a−1)]

+
1

3K + 2
[(a, a2) + 3K(a2, a2) + (a2, a)]

+
1

3K(3K + 2)
[(a−1, a−2) + 3K(a−2, a−2) + (a−2, a−1)]

+
9K2 − 1

K(3K + 2)(6K + 3)
[(2K + 1)(a−2, a−1) + (2K + 1)(a−2, a−1)],

where each bracket is a disk vector. In particular, we know vA ∈ VA and

κA(vA) ≥ 3
3K + 2

+
K

(2K + 1)(3K + 2)
+

1
(6K + 3)(3K + 2)

+
1

3K(3K + 2)
+

9K2 − 1
K(3K + 2)(6K + 3)

=
30K + 12

(3K + 2)(6K + 3)
.
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Similarly, let

vB =
3K

3K + 2
[(b, b−1) + (b−1, b)] +

3K
3K + 2

[(b2, b−2) + (b−2, b2)]

+
1

3K + 2
[(b2, b−1) + (b−1, b−1) + (b−1, b2)]

+
1

3K + 2
[(b, b−2) + (b−2, b−2) + (b−2, b) + (b, b2) + (b2, b)] ∈ VB,

where each bracket is a disk vector and

κB(vB) ≥ 2− 2
3K + 2

.

One can check that vA and vB satisfy the gluing condition and (vA, vB) ∈ Yl where l is
the fundamental class of the loop representing the chain c. Therefore by Corollary 4.17
(the equality part), for any K,L ≥ 0, we have

scl(cooo) ≤ 1
2

[2−κA(vA)] +
1
2

[2−κB(vB)] ≤ 1− 18K + 6
(6K + 3)(6K + 4)

= 1− 3(o1 − 1)
o1(o1 + 1)

.

For the other direction, we only need to show that (vA, vB) constructed above achieves
the maximum of the optimization problem

(P0) maximize: κA(u) + κB(w) subject to: (u,w) ∈ Yl,

and that the estimates for κA(vA) and κB(vB) above are sharp. The key idea is to use
duality of linear programming. Here is an outline:

(1) We linearize this optimization problem (P0) in a way similar to [11]. On the “A”
side, consider the directed graph (as in [4]) with vertex set T(A) and directed
edge set T(A)2 . Let SLA be the set of directed simple (ie visiting each vertex
at most once) loops. Each directed loop cyclically visiting vertices a1, . . . , an

corresponds to a vector
∑n

i=1(ai, ai+1) in V ′A . Then disk vectors can be written
(not uniquely) as linear combinations of simple loops with non-negative integral
coefficients. One can enumerate disk vectors that are extremal, ie cannot be
written as a convex combination of other disk vectors plus a non-negative linear
combination of simple loops. It turns out that there are finitely many (169)
extremal disk vectors and each depends linearly on K , which is compatible with
Lemma 6.7 below. Denote the set of extremal disk vectors by EDA . Obtain SLB

and EDB on the “B” side simply by substituting a and K by b and L respectively
since the two sides have the same structure. Then (P0) can be linearized as:

(P) maximize: f Tx subject to: Cx = b and x ≥ 0 (entrywise),
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where x = (xi) and f = (fi) are indexed by SLA t EDA t SLB t EDB , fi = 1 if
i ∈ EDA t EDB , fi = 0 otherwise, and the constraint Cx = b corresponds to
gluing and normalization conditions.

(2) The way we decompose vA, vB into disk vectors gives rise to a feasible solution
x0 to (P). Our goal is to show that x0 achieves the maximum. To accomplish
this, it suffices to find y0 such that

CTy0 ≥ f (entrywise) and xT
0 CTy0 = xT

0 f .

This proves the maximality because

f Tx = xT f ≤ xTCTy0 = bTy0 = xT
0 CTy0 = xT

0 f = f Tx0.

One such y0 (in an explicit formula involving K and L) can be guessed out via
results found by computers for small values of K and L (vA and vB are also
found in this way). The constants r and s come into the statement because the
author only checked CTy0 ≥ f when L/K and K are large enough.

We omit the details since it is tedious and takes too much space to enumerate the
extremal disk vectors and check CTy0 ≥ f .

Nevertheless, a weaker version of Walker’s conjecture is true:

Theorem 6.4 For any fixed rational chain c in Fn , scl(cooo) is piecewise quasi-rational
in ooo, ie there are some p ∈ Z+ , and a finite partition of Zn

≥2 , such that on each piece,
fixing any congruence class of each oi mod p, scl(cooo) is in Q(ooo).

Timothy Susse [14, Corollary 4.14] proved the same result by considering a fixed chain
in a family of amalgamations of free abelian groups, whose projection to the free product
of cyclic groups preserves scl. Our proof is independent and new.

We focus on a single factor A = Z/kZ. Using notations as in Section 4, the key is
to show that the vertices of conv(DA + VA) behave nicely as k varies in congruence
classes (see Lemma 6.7). Since H1(A;R)=0, we have h = 0. Thus VA consists of
non-negative vectors in C2(A) ∩ {∂ = 0} and does not depend on k . However, DA

typically depends on k , and we denote it by Dk to emphasize the dependence.

We first describe Dk . For simplicity, we assume n = 2, and c = a1b1 . . . ambm is a
single word, but the proofs of lemmas are the same for the general case. Consider the
directed graph X(A) with vertex set T(A) and edge set T2(A). Then each v ∈ VA defines
non-negative weights on the directed edges, and its support, supp(v), is the subgraph of
X(A) consisting of edges with positive weights.
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Let a, b be the generators of F2 giving the free product structure. Then each ai = ati

for some ti ∈ Z\{0}. Let h̃ : C2(A) → R be the linear map such that for any
(ai, aj) ∈ T2(A), h̃(ai, aj) = (ti + tj)/2.

Then it is easy to see that Dk is the set of integer vectors v in VA such that h̃(v) ∈ kZ
and supp(v) is connected and nonempty (see [4] for details).

We can decompose VA into finitely many simplicial rational open cones, ie each is of
the form {

d∑
i=1

tivi

∣∣∣∣∣ ti > 0

}
,

for some d ≥ 1 and a set of linearly independent rational vectors vi . Moreover, each
simplicial rational cone can be decomposed into finitely many unimodular cones, ie
where we can take the set of vi to be unimodular, by Barvinok’s theorem [1, Chapter
16]. So we first prove the following key lemma leading to Lemma 6.7 and Theorem 6.4.

Lemma 6.5 Let V = Rd
>0 and f (x) =

∑
aixi (ai ∈ Q) be a rational linear function.

Let Vk = f−1(k)∩V and Ek be the set of integer points in Vk . Then there are M, p ∈ Z+

such that:

(1) for each congruence class mod p, there are finitely many points vj(k) ∈ V that
depend linearly on k such that conv(Ek + Vk) = conv({vj(k)} + Vk) for any
k > M in this given congruence class;

(2) for each congruence class mod p, there is a finite set Fk of points depending
linearly on k , such that

conv(∪t∈Z+Etk + V) = conv(Fk + V)

for any k > M in the given congruence class mod p. More precisely, we can
take Fk = ∪p

t=1{vj(tk)} for any k > M .

Lemma 6.5 is similar in spirit to the following special case of the main theorem of [7],
which we will use in our proof.

Lemma 6.6 (Calegari–Walker [7]) Let {ξi(k)} be a finite set of points depending
linearly on k , and then there are M, p ∈ Z+ such that the vertices (finitely many) of the
integer hull of conv(ξi(k)) depend linearly on k > M in each congruence class mod p.

Proof of Lemma 6.5 We first prove (2) assuming (1). Notice that each vj(k) depends
linearly on k and stays in V . Thus if k′ > k > M and k′ ≡ k mod p, then
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vj(k′) ∈ vj(k) + V . Also notice that any tk is congruent to some t0k with 1 ≤ t0 ≤ p.
Hence the vertices of conv(∪t∈Z+Etk + V) are contained in Fk = ∪p

t=1{vj(tk)}, and the
assertion holds.

Now we prove (1). We may assume all ai ’s are non-zero, otherwise we can do a
dimension reduction. Let P and N be the set of indices such that ai is positive or
negative respectively. If P = ∅, then Ek = ∅ and the problem is trivial, so we also
assume P 6= ∅ in the sequel. Let {ei} be the standard basis of Rd . For any i ∈ P, let
ξi(k) = kei/ai ∈ Vk .

If N = ∅, ie all ai > 0, then Vk is the interior of the simplex with vertices {ξi(k)} and
its set of integer points Ek coincides with that of the polyhedron

∆k := {(x1, x2, . . . , xd) | xi ≥ 1} ∩ conv{ξi(k)}.

When k >
∑

i ai , ∆k is the (compact) simplex with vertices∑
j 6=i

ej +
k −

∑
j 6=i aj

ai
ei


d

i=1

depending linearly on k , so our assertion follows from Lemma 6.6.

Now also suppose N 6= ∅. Then Vk = conv{ξi | i ∈ P} + V0 . We first deal with
integer points in each ξi + V0 . Pick p such that p/ai ∈ Z. Then for k = tp + k0 with
0 ≤ k0 ≤ p − 1 fixed, ξi + V0 is t(p/ai) · ei + C where C = (k0/ai) · ei + V0 is a
translate of V0 which does not depend on k . Therefore, in this congruence class, the
integer hull of ξi + V0 is just that of C translated by t(p/ai)ei , a vector depending
linearly on k .

If x ∈ Vk is not contained any ξi + V0 (this does not happen for |P| = 1, so we assume
|P| ≥ 2 below), then for each i ∈ P, we have xi ≤ k/ai , and hence x lies in

Ck := Vk ∩

(⋂
i∈P

{x | xi ≤ k/ai}

)
.

The set of integer points in Ck coincides with that in

Qk := {x ∈ Vk|xi ≥ 1, ∀i, and xi ≤ k/ai, ∀i ∈ P}.

Qk is compact since 1 ≤ xi ≤ k/ai for any i ∈ P and x ∈ Vk implies

xj ≤ k(|P| − 1)/(−aj) ∀j ∈ N.

To see the vertices of Qk , consider its decomposition into the following level sets:

Q(t)
k :=

{
x ∈ Qk

∣∣∣∣∣∑
i∈P

aixi = t

}
.
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When k(|P| − 1) ≥
∑

j∈N(−aj) and k ≥
∑d

i=1 ai , the set Q(t)
k is non-empty if and only

if k −
∑

j∈N aj ≤ t ≤ k|P|. For such t , one can see that Q(t)
k is the product of{

(xi)i∈P

∣∣∣∣∣1 ≤ xi ≤ k/ai, ∀i ∈ P,
∑
i∈P

aixi = t

}
(combinatorially a level set of a cube)

and (xj)j∈N

∣∣∣∣∣∣xj ≥ 1,∀j ∈ N,
∑
j∈N

(−ajxj) = t − k

 (a simplex).

From this, we can see that the vertices of Qk are of the form{
x
∣∣∣ xi = 1 or

k
ai
,∀i ∈ P, and

∃l ∈ N, s.t. xj = 1,∀j ∈ N − {l}, xl =

∑
i6=l aixi − k

−al
≥ 1
}

or {
x
∣∣∣ xj = 1, ∀j ∈ N, and

∃l ∈ P s.t. xi = 1 or
k
ai
,∀i ∈ P− {l}, xl =

k −
∑

i6=l aixi

al
∈
[

1,
k
al

]}
,

each depending linearly on k , so Lemma 6.6 applies. Since Vk is the union of ξi + V0

(i ∈ P) and Ck , and the integer hull of each part has vertices depending linearly on
k� 1 in a congruence class, so our assertion follows.

Now we can prove the following result.

Lemma 6.7 There are M, p ∈ Z+ such that for each congruence class mod p,
there exists finitely many points vj ∈ VA , each depending linearly on k , such that
conv(Dk + VA) = conv({vj}+ VA) for any k > M in this given congruence class.

Proof According to the discussion ahead of Lemma 6.5, we can express VA as the
union of top-dimensional faces (denote them by V(i)) of finitely many simplicial
unimodular (Barvinok’s theorem [1, Chapter 16]) rational cones, and the intersection of
Dk with each V(i) is either empty (when the support is disconnected) or exactly the
integer points in V(i) ∩ h̃−1(kZ). Applying Lemma 6.5 to each V(i) with f = h̃ and
f = −h̃ respectively (together with the set V(i) ∩ h̃−1(0) that does not depend on k),
we see that there are M, p ∈ Z+ such that for each congruence class mod p, there exist
finitely many points vj(i) such that conv(Dk ∩ V(i) + V(i)) = conv({vj(i)}+ V(i)) for
any k > M in this given congruence class. This completes the proof by taking the union
since there are only finitely many i’s.
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Now we prove Theorem 6.4.

Proof of Theorem 6.4 It follows from Lemma 6.7 that for k� 1 in a fixed congruence
class mod p, κA is the minimum of finitely many linear functions each having coefficients
in Q(k). Here A can be any factor group and k is the corresponding oi . Therefore,
if we fix the congruence classes of oi � 1, combining with the proof of Theorem A,
scl(cooo) is determined by minimizing, on a fixed compact convex set C , the maximum
of finitely many linear functions fj each having coefficients in Q(ooo). Thus we can
find a finite polyhedral decomposition of C with vertices having Q(ooo) coordinates,
and maxj{fj} linear on each piece. It follows that scl is the minimum of finitely many
functions in Q(ooo), ie the values of maxj{fj} on these finitely many vertices, and hence
scl is piecewise Q(ooo).

7 Appendix

Here we give a proof of equation (4–2). For convenience, we use #s(w) to denote the
number of subwords s inside w. Let Wu,v be the set of cyclic words w in a, b, c such
that w contains u copies of each of ab, bc, ca and v copies of ac, cb, ba as subwords.

For each w ∈ Wu,v , let f (w) be the unique integer such that w can be written as
(abc)k[a, b]f (w) by moving letters around and using [a, b] = [b, c] = [c, a]. In Example
4.5, we defined Su,v to be the image of Wu,v under f .

In order to prove the equation inductively, we first introduce a way to reduce the
computation of Su,v to that of smaller indices.

For each w ∈ Wu,v , the letter a appears u + v times in w. For convenience, we make
the following definition.

Definition 7.1 An a-connecting subword of w is the subword between two consecutive
a’s in w.

For example, if abcba is a subword of w, then bcb is an a-connecting subword of w.
We classify all a-connecting subwords and divide them into three categories:

(1) degree 1: b(cb)kc with k ≥ 0;

(2) degree 0: b(cb)k or c(bc)k with k ≥ 0;

(3) degree −1: c(bc)kb with k ≥ 0.
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Lemma 7.2 If there are two degree 1 a-connecting subwords in w ∈ Wu,v , then we
can find w1,w2 ∈ Wu−1,v such that

f (w1) ≤ f (w) ≤ f (w2).

Proof Up to a cyclic permutation, w = ab(cb)kcRab(cb)lcT where R and T are empty
words or subwords starting with a, and k, l ≥ 0. Recall that abc is in the center and a
commutes with bc, so we have ab(cb)lc = a−l(abc)l+1 and

[ab(cb)lc,R] = [a−l,R] = [a, b]l(#c(R)−#b(R)).

Thus

w = ab(cb)kcab(cb)lcRT · [ab(cb)lc,R]−1 = ab(cb)kcab(cb)lcRT · [a, b]l(#b(R)−#c(R)).

Notice that ab(cb)kcab(cb)lcRT is still in Wu,v , and removing the underlined cab
which is followed by c, we will get a word w1 = ab(cb)k+lcRT ∈ Wu−1,v and
f (w1) = f (w) + l(#b(R)− #c(R)).

Similarly
w = Rab(cb)kcab(cb)lcT · [a, b]k(#c(R)−#b(R)),

so w2 = Rab(cb)k+lcT ∈ Wu−1,v and f (w2) = f (w)− k(#b(R)− #c(R)).

Hence if #b(R)− #c(R) ≤ 0, we are done; otherwise switch w1 and w2 .

Proof of equation (4–2) Notice the following symmetry: Reading a word w ∈ Wu,v

in reverse order gives a word r(w) ∈ Wv,u and f (r(w)) = −f (w)− (u + v). Thus

Su,v = −Sv,u − u− v.

According to Lemma 7.2, if w ∈ Wu,v has two degree 1 a-connecting subwords in w,
then f (w) ∈ Su−1,v assuming that Su−1,v consists of integers in an interval. Similarly
by the symmetry above, if w ∈ Wu,v has two degree −1 a-connecting subwords in w,
then f (w) ∈ Su,v−1 assuming that Su,v−1 consists of integers in an interval.

First assume we have proved the equation for u = v + 1. We induct over u− v to show
that Su,v = Sv+1,v whenever u ≥ v + 1. Suppose w ∈ Wu,v with u > v + 1, notice that
an a-connecting subword w0 has degree d if and only if

[#ab(aw0a) + #ca(aw0a)]− [#ac(aw0a) + #ba(aw0a)] = 2d.

Also notice that if we sum the left hand side of the equation above, over all a-connecting
subwords, we will get 2(u− v) ≥ 4. Hence we conclude that there exist two degree 1
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a-connecting subwords in w, and thus f (w) ∈ Su−1,v since Su−1,v consists of integers
in an interval by the induction hypothesis. This shows that Su,v ⊂ Su−1,v , but the other
inclusion is obvious: adding a copy of abc ahead of a letter a in w ∈ Su−1,v will result
in a new word w′ ∈ Su,v with f (w′) = f (w).

Therefore, using the symmetry, we only need to prove the equation for Su,v with
|u− v| ≤ 1, and we induct on u + v. The base cases are easy to check. We now show

Sv+1,v =

[
−v(v + 1)

2
,

v(v− 1)
2

]
∩ Z

assuming (4–2) holds for all Su′,v′ with u′ + v′ < 2v + 1 and |u′ − v′| ≤ 1.

Consider the following family of words in Wv+1,v :

wk = a(bc)k+1ac(bc)v−k(ac)v−1(ab)v, 0 ≤ k ≤ v.

A direct computation shows that f (wk) = v(v− 3)/2 + k . This together with arguments
before shows that Sv,v ∪ [v(v− 3)/2, v(v− 1)/2] ⊂ Sv+1,v , and hence by the induction
hypothesis, we have [

−v(v + 1)
2

,
v(v− 1)

2

]
∩ Z ⊂ Sv+1,v.

So we only need to show

max(Sv+1,v) ≤ v(v− 1)/2 and min(Sv+1,v) ≥ −v(v + 1)/2.

Suppose w ∈ Wv+1,v achieves max(Sv+1,v) ≥ f (wv) = v(v− 1)/2, we see that

(1) w does not contain subwords abca, bcab or cabc, otherwise f (w) ∈ Sv,v , which
has maximum v(v− 3)/2 < v(v− 1)/2 by induction;

(2) w does not contain subwords acba, bacb or cbac, otherwise f (w) ∈ Sv+1,v−1 ,
and Sv+1,v−1 = Sv,v−1 has maximum (v − 1)(v − 2)/2 − v < v(v − 1)/2 by
induction;

(3) w does not contain the subword abaca, since it can be replaced by acaba to get
a new word w′ ∈ Wv+1,v with f (w′) > f (w);

(4) only one a-connecting subword in w has degree 1, others have degree 0, otherwise
there will be at least two degree 1 subwords (since the sum of degrees is 1),
which implies (by Lemma 7.2 and the induction hypothesis) f (w) ≤ max(Sv,v)
contradicting maximality.
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Therefore w must be of the form (up to replacing it by another that also achieves the
max)

w = abc(bc)kac(bc)p1a · · · ac(bc)psacabab(cb)q1ab(cb)qt ,

where s, t ≥ 0, k ≥ 0 and pi, qj ≥ 0. Since w ∈ Wv+1,v , we see s = t = v − 1 and
k +

∑
pi +

∑
qj = v. A direct computation shows

w = (abc)(ab)v(bc)v(ab)v[a, b]e,

where e = vk +
∑

(v − i)pi +
∑

jqj . Maximizing f (w) is the same as maximizing
e, which requires pi = qj = 0 and k = v. Therefore w = wv as we constructed and
max(Sv+1,v) ≤ f (wv) = v(v− 1)/2.

Similarly we can show min(Sv+1,v) ≥ −v(v + 1)/2. Hence (4–2) holds for Sv+1,v , and
for Sv,v+1 by symmetry. The inductive step for Sv,v is completely similar, so we omit it.
This completes the proof.
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