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Abstract. We study a skew product transformation associated to an irrational rotation of the
circle [0, 1]/ ∼. This skew product keeps track of the number of times an orbit of the rotation lands in
the two complementary intervals of {0, 1/2} in the circle. We show that under certain conditions on
the continued fraction expansion of the irrational number defining the rotation, the skew product
transformation has certain dense orbits. This is in spite of the presence of numerous non-dense
orbits. We use this to construct laminations on infinite type surfaces with exotic properties. In
particular, we show that for every infinite type surface with an isolated planar end, there is an infinite
clique of 2-filling rays based at that end. These 2-filling rays are relevant to Bavard–Walker’s loop
graphs.

1. Introduction

Our goal in this paper is to study skew products over irrational rotations on the circle and to
explore relationships to laminations on infinite type surfaces. In particular, we prove that specific
orbits are dense in a collection of skew product transformations. We use this to show that certain
laminations on infinite type surfaces have dense boundary leaves. Finally, we use this to construct
certain rays on infinite type surfaces with exotic properties, which are relevant to the study of
Bavard–Walker’s loop graphs.

We consider the circle S1 as the closed unit interval [0, 1] with 0 and 1 identified. For a number
α ∈ [0, 1), we define the rotation t = tα : S1 → S1 by t(x) = x+α modulo 1. We define the function
f : S1 → R by f = χ[0,1/2) − χ[1/2,1) where χE denotes the characteristic function of the set E in
question. We define a resulting skew product transformation T = Tα : S1 × Z→ S1 × Z by

T (x, s) := (tx, s+ fx) = (x+ α, s+ fx).

We endow Z with the discrete topology and S1×Z with the resulting product topology. We consider
the continued fraction expansion for α,

α = [0; a1, a2, . . .] =
1

a1 + 1
a2+ 1

a3+...

.

We prove:

Theorem 1.1. Suppose that the continued fraction expansion α = [0; a1, a2, . . .] satisfies that a1 ≥ 5
is odd and an ≥ 6 is even for every n > 1. Then, for any s ∈ Z, the (forward) orbit {Tn(1/2, s)}∞n=0

is dense in S1 × Z.

Note that for any n ≥ 0, Tn(x, s) = (tnx, s + Sn(x)) where Sn(x) =
∑n−1

i=0 f(tix) is the nth

Birkhoff sum for x. For any m ∈ Z, we consider the set Σ(x,m) := {n ∈ Z≥0 : Sn(x) = m} of
times n at which Sn(x) is equal to m. Denote by k + Σ(x,m) the set above translated by k ∈ Z.
The following corollary (when k = 0) is a restatement of Theorem 1.1, which is useful for our
applications.

Corollary 1.2. Suppose that the continued fraction expansion α = [0; a1, a2, . . .] satisfies that
a1 ≥ 5 is odd and an ≥ 6 is even for every n > 1. Then, for any k,m ∈ Z, the partial orbit
{tn(1/2)}n∈k+Σ(1/2,m) is dense in S1.
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In particular, for any m ∈ Z, there are infinitely many n ≥ 0 with Sn(1/2) = m. In contrast,
it is shown in [6, Theorem 1] (by the characterization of H2) that Sn(1/2) < 0 for all n ≥ 1 if
α = [0; a1, a2, . . .] with ai even for all i odd. In addition, for almost every α, there is an uncountable
set (with Hausdorff dimension equal to some constant c ∈ (0, 1) independent of α) of initial points
x ∈ [0, 1) with Sn(x) ≤ 0 for all n ≥ 1 [8].

We use our results above to construct examples of interesting laminations and rays on infinite
type surfaces. For the first statement, recall that a complete hyperbolic surface X is of the first
kind if it is equal to its convex core. A geodesic lamination Λ on X is topologically transitive if it
contains a leaf which is dense in Λ.
Theorem 1.3. Let S be any orientable infinite type surface with at least one isolated puncture.
Then there is a hyperbolic surface X of the first kind homeomorphic to S, and a geodesic lamination
Λ on X, such that Λ is topologically transitive, with infinitely many leaves which are not dense in
Λ.

For our second application, we consider the loop graph L(S; p) of an infinite type surface S with
an isolated puncture p, defined by Bavard in [2] and studied further by Bavard–Walker in [4] and [5].
The vertices of L(S; p) are the simple, essential loops on S asymptotic to p on both ends, considered
up to isotopy. Two isotopy classes are joined by an edge when the corresponding isotopy classes
can be realized disjointly. The graph L(S; p) is Gromov-hyperbolic and of infinite diameter [5]; see
also [1]. Bavard–Walker [5] identified the points on the Gromov boundary of L(S; p) with cliques of
the so-called high-filling rays. As a related notion, a 2-filling ray ` on S is a kind of fake boundary
point for L(S; p). Namely, such a ray is asymptotic to p, and intersects every loop on S, so that it
has strong filling properties similar to high-filling rays, but it is not high-filling. See Section 3 for
the precise definitions.

Bavard–Walker asked in [4, Question 2.7.7] whether 2-filling rays exist, for instance, when S is the
plane minus a Cantor set. This was answered affirmatively by the authors in [7]. Such 2-filling rays
always come organized into families of mutually disjoint 2-filling rays called cliques. The authors
showed that the cliques can have any finite cardinality in [7, Theorem 5.1], and asked whether such
cliques can be infinite [7, Question 5.7]. We answer this question affirmatively in Theorem 1.4 below
for any infinite type surface S with an isolated puncture. In particular, 2-filling rays exist on all
such surfaces. The analogous problem about the size of cliques of high-filling rays has been solved
by methods different from our dynamical approach: such a clique can be of any finite cardinality
on any infinite type surface S with an isolated puncture by [4, Theorem 8.1.3], and it can also be
infinite at least when S is the plane minus a Cantor set by [3].
Theorem 1.4. Let S be an orientable infinite type surface with at least one isolated puncture p.
Then there exists an infinite clique of 2-filling rays on S based at p.

It is an open problem to describe the boundaries of the loop graphs L(S; p) as spaces of geodesic
laminations. The authors believe that solving this problem would lead to significantly better un-
derstanding of the graphs L(S; p). The existence of exotic laminations and rays as constructed in
Theorem 1.3 and Theorem 1.4 and in [7] point to the difficulty of solving this problem and to the
complexity of the graphs L(S; p). It would be interesting to use skew products to construct other
interesting laminations and mapping classes of infinite type surfaces.

Acknowledgments. We owe a debt of gratitude to Jon Chaika for teaching us and suggesting the
method used in this paper for studying irrational rotations.

2. Proof of Theorem 1.1

We choose α = [0; a1, a2, . . .] satisfying the conditions of Theorem 1.1; i.e. a1 ≥ 5 is odd and
ai ≥ 6 is even for every i ≥ 2. Furthermore we set α1 = α and for i ≥ 2,

(2.1) αi = [0; ai − 1, ai+1, ai+2, . . .].
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Let
G(x) =

1

x
−
⌊

1

x

⌋
be the Gauss transformation. Then αi+1 = G(αi)/(1−G(αi)).

Our method of proof considers first return maps to certain subintervals, which shares some
similarity with the renormalization procedure used in related work; see [8] for instance, which also
gives insights about the behavior of other orbits.

We will compute a sequence of nested intervals [0, 1) = I1 ⊃ I2 ⊃ I3 ⊃ . . . each centered at 1/2
and the first return maps to Ii. Let

ki : Ii → N, ki(x) = inf{k > 0 : tkx ∈ Ii}
be the first return time to Ii and

ti : Ii → Ii, ti(x) = tki(x)(x)

be the first return map. Our construction guarantees the following properties, which we will verify
later.

(1) ti is rotation by (−1)i+1αi (rescaled by the length of Ii).
(2) Moreover, we compute the induced Birkhoff sums

f i : Ii → Z, f i(x) =

ki(x)−1∑
j=0

f(tjx);

i.e. f i records the Birkhoff sum accumulated before a point in Ii returns to Ii under iteration
of t. Then by our construction f i will be equal to +1 on the sub-interval of points to the
left of 1/2 and −1 on the sub-interval of points to the right of 1/2.

Theorem 1.1 is a consequence of the following, seemingly weaker proposition.

Proposition 2.1. There is a sequence of intervals [0, 1) = I1 ⊃ I2 ⊃ I3 ⊃ . . . such that:
(1) Ii contains 1/2 for each i and is symmetric about 1/2 for each i;
(2) for each i ≥ 1 the interval Ii+1 has length |Ii+1| ≤ αi|Ii|;
(3) for each i ≥ 2, after rescaling Ii by 1/|Ii|, the function f i(x) is equal to χ[0,1/2) − χ[1/2,1);
(4) for any i, and for any m ∈ Z, there exists an orbit point tk(1/2) ∈ Ii, for some k ∈ Z+,

with Sk(1/2) = m.

Proof of Theorem 1.1 assuming Proposition 2.1. First we improve the last bullet point to the follow-
ing claim: for any m ∈ Z there exist orbit points tk(1/2) in Ii to the right of 1/2 with Sk(1/2) = m
and similarly there exist points tk(1/2) to the left of 1/2 with Sk(1/2) = m. We focus on the case
of finding points to the right of 1/2, as the other case is analogous.

Choose i odd, so that the first return to Ii is rotation by αi = [0; ai − 1, ai+1, ai+2, . . .]. For any
m ∈ Z, there is tk(1/2) ∈ Ii+1 with Sk(1/2) = m. If tk(1/2) lies to the right of 1/2 then there is
nothing to show. Otherwise, since ai − 1 ≥ 5, the length of Ii+1 is at most αi|Ii|, and tk(1/2) lies
in Ii+1, we have that ti(tk(1/2)), t

2
i (t

k(1/2)) ∈ Ii both lie to the right of 1/2. Now we compute the
Birkhoff sum at t2i (tk(1/2)). Let

l = ki(t
k(1/2)) + ki(ti(t

k(1/2)))

be the second return time of tk(1/2) to Ii. Then by (3) we have

Sk+l(1/2) = Sk(1/2) + f i(t
k(1/2)) + f i(ti(t

k(1/2))) = Sk(1/2) + 1 + (−1) = Sk(1/2) = m.

That is, the point tk+l(1/2) = t
2
i (t

k(1/2)) ∈ Ii justifies the claim.
Now the theorem follows from this claim. By Proposition 2.1, the closure of the orbit of (1/2, 0)

contains {1/2}×Z. By the claim, for any m ∈ Z, we may choose points tk(1/2) arbitrarily close to
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1/2 and to the right with Sk(1/2) = m. Consider any ε ∈ (0, 1/2) and a point (x,m) ∈ S1 ×Z. We
want to show that for any s ∈ Z, the orbit of (1/2, s) contains a point in [x, x+ ε)× {m}. Since α
is irrational, the rotation t is minimal and there exists k ≥ 0 with tk(1/2) ∈

[
x, x+ ε

2

)
. Suppose

that Sk(1/2) = N . The functions {f ◦ ti}ki=0 are individually constant on a short interval that has
1/2 as its left endpoint, so there is 0 < δ < ε/2 such that any point y ∈ [1/2, 1/2 + δ) satisfies
Sk(y) = Sk(1/2) = N . By the claim, we can choose l ≥ 0 such that

T l(1/2, s) = (tl(1/2), Sl(1/2)) ∈
[

1

2
,
1

2
+ δ

)
× {m− s−N}.

Then
T l+k(1/2, s) =

(
tl+k(1/2), s+ Sl(1/2) + Sk(t

l(1/2))
)
.

As tl(1/2) ∈ [1/2, 1/2 + δ) and tk(1/2) ∈ [x, x+ ε/2), we have

tl+k(1/2) = tk(tl(1/2)) ∈ [tk(1/2), tk(1/2) + δ) ⊂ [x, x+ ε).

In addition, Sk(tl(1/2)) = N by our choice of δ. It follows that s + Sl(1/2) + Sk(t
l(1/2)) =

s+ (m− s−N) +N = m and T l+k(1/2, s) ∈ [x, x+ ε)× {m}, as desired. �

Now we deduce Corollary 1.2 from Theorem 1.1.

Proof of Corollary 1.2. Theorem 1.1 is equivalent to the following major case of Corollary 1.2: For
anym ∈ Z, the partial orbit {tn(1/2)}n∈Σ(1/2,m) is dense in S1. For the general case, for an arbitrary
k ∈ Z, we are interested in the density of the orbit points tn+k(1/2) with n ∈ Σ(1/2,m), i.e. the
image of the partial orbit {tn(1/2)}n∈Σ(1/2,m) under the rotation tk. Such a partial orbit is also
dense in S1. �

It remains to find the intervals Ii and prove Proposition 2.1. For this we proceed by induction.
To construct Ii+1 based on J = Ii and its first return map, the inductive step fits into the following
setup:

Assumption 2.2.
• We have chosen an interval J ⊂ [0, 1) which contains 1/2 and is centered at 1/2.
• After scaling J by 1/|J | to unit length, the first return map to J , which we denote by tJ , is
a rotation by a number β = ±[0; b, . . .] with b ≥ 5 odd (so |β| < 1/5).

We construct a sub-interval Jnew of J that is centered at 1/2 with well-understood first return
map among other properties. We describe the construction below in Lemmas 2.5 and 2.8, depending
on the sign of β.

In the discussion below, we frequently look at different left-closed and right-open sub-intervals of
[0, 1) centered at 1/2 and rescale them to length 1. To avoid confusion due to different scales, we
use the following convention.

Convention 2.3. For a sub-interval J of [0, 1) centered at 1/2, we abuse notation and let J :
[0, 1) → J be the unique affine homeomorphism fixing 1/2. Then for any x ∈ (0, 1), J(x) is the
point at distance x from the left endpoint of J after rescaling J to unit length. Similarly, J [a, b) is
the sub-interval of J corresponding to the interval [a, b) ⊂ [0, 1) after rescaling J to unit length.

First case: β > 0

We first consider the case β > 0 and introduce some notation in order to state the inductive
construction in Lemma 2.5. Note that the first coefficient b = b1/βc. We partition J into sub-
intervals

J0 = J [0, β), J1 = J [β, 2β), . . . , Jb−1 = J [(b− 1)β, bβ), Jb = J [bβ, 1),
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each of which has length β|J | except for Jb, which has length βG(β)|J | where G(x) = 1/x− b1/xc
as before. For a point x ∈ J , we have tJ(x) = tk(x)(x) where k(x) = inf{k > 0 : tkx ∈ J}, and by
our induction hypothesis, tJ(J(x)) = J(x+ β mod 1) and tJ(Ji) = Ji+1 for all 0 ≤ i < b− 1. We
consider the orbit of x ∈ J under t before its first return to J , and record the sequence of values of
f along this orbit, namely

F(x) = {f(x), f(t(x)), . . . , f(tk(x)−1(x))}.

This is equivalent to recording the sequence of partial sums S(x) = {Si(x)}k(x)
i=1 with Si(x) :=∑i−1

j=0 f(tj(x)). The partial sums keep track of the increment in the second coordinate (compared
to (x,m)) along the orbit of (x,m) under T in the skew product:{

(x,m), T (x,m) = (tx,m+ fx) , . . . , T k(x)(x,m) =
(
tk(x)x, m+ Sk(x)(x)

)}
Finally, we set Σ(x) = Sk(x)(x), which is the total sum of the sequence F(x). We use F1 · F2 to
denote the concatenation of two sequences F1 and F2.

Here are our remaining assumptions for the case β > 0 in addition to Assumption 2.2:

Assumption 2.4. There are sequences F+, F−, and F0 with total sums 1, −1, and 0, respectively,
such that

• Whenever x ∈ J [0, 1/2), we have F(x) = F+,
• Whenever x ∈ J [1/2, 1− β), we have F(x) = F−,
• Whenever x ∈ J [1− β, 1), we have F(x) = F− · F0.

Here we allow F0 to be an empty sequence.

As a consequence of the assumptions above, the sequence S(x) must be the sequence of partial
sums for F+, F−, or F+ · F0 depending on the location of x as above. Denote the partial sum
sequences of F+ and F− by S+ and S−, and denote the total sums of F+, F−, F0 as Σ+,Σ−,Σ0.
The assumptions above imply Σ+ = 1, Σ− = −1, and Σ0 = 0.

We record the maximum and minimum over each sequence of partial sums, i.e.

m+ := min S+, M+ := max S+, m− := min S−, M− := max S−

Our aim is to find a sub-interval Jnew ⊂ J containing and centered at 1/2, for which the first
return to Jnew, rescaled by 1/|Jnew|, is a rotation by a new number βnew = −[0; c, . . .] with c ≥ 3
determined by β explicitly as in Lemma 2.5 below. Moreover, for x ∈ Jnew, denote the first return
time to Jnew as

knew(x) = inf{k > 0 : tk(x) ∈ Jnew}
and consider as before the sequence of f -values

Fnew(x) := {f(x), f(t(x)), . . . , f(tk
new(x)−1(x))}.

Let Snew(x) be the sequence of partial sums associated to Fnew(x), and let Σnew(x) = Sknew(x)(x)
be the total sum.

The following lemma shows how we construct the sub-interval Jnew and the nice properties
guaranteed by the construction.

Lemma 2.5. Suppose there is a sub-interval J ⊂ [0, 1) with first return map tJ satisfying Assump-
tions 2.2 and 2.4 with β = [0; b, c + 1, . . .] > 0, where c ≥ 3. Denote b = 2n + 1 with n ≥ 1. Then
the sub-interval Jnew ⊂ J given by

Jnew := J

[
1

2
− 1

2
β(1−G(β)),

1

2
+

1

2
β(1−G(β))

)
.

has the following properties:
(1) Jnew is symmetric about 1/2 of length β(1−G(β))|J |.
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1
2J0 J1 J2 J3 J4 J5

J2 \ Jnew = t−3J (J5)
t3J(Jnew) t4J(Jnew)

Jnew tJ(Jnew) t2J(Jnew)

Figure 1. The decomposition of J into Ji’s when b = 2n+ 1 = 5 for n = 2 and the
orbit of Jnew under iterations of tJ , for β > 0

(2) Jnew is a sub-interval of Jn, the right endpoints of Jnew and Jn are the same, and the left
endpoint of Jnew has distance βG(β)|J | = |Jb| from the left endpoint of Jn.

(3) The image of Jn \ Jnew under n+ 1 iterations of tJ is Jb.
(4) Re-scaling by 1/|Jnew|, the first return map to Jnew is rotation by

βnew := −G(β)/(1−G(β)) = −[0; c, . . .].

(5) There are sequences

Fnew
+ := F+ · Fn− · F0 · Fn+, Fnew

− := Fn+1
− · F0 · Fn+, and Fnew

0 := F+ · Fn+1
− · F0 · Fn+

satisfying:
• whenever x ∈ Jnew[0, βnew) we have Fnew(x) = Fnew

+ Fnew
0 ,

• whenever x ∈ Jnew[βnew, 1/2) we have Fnew(x) = Fnew
+ ,

• whenever x ∈ Jnew[1/2, 1) we have Fnew(x) = Fnew
− .

Moreover, Fnew
+ ,Fnew

− ,Fnew
0 have total sums 1,−1, 0 respectively.

Proof. Item (1) is immediate. To see item (2), note that 1/2 lies in the interval Jn = J [nβ, (n+1)β)
and its distances to the endpoints are(

1

2
− nβ

)
|J | = 1

2
(1− 2nβ)|J | = 1

2
β|J |(1 +G(β)) and

(
(n+ 1)β − 1

2

)
|J | = 1

2
β|J |(1−G(β)).

Since tJ is rotation by β|J | = |Ji| for i < b and tJ(Ji) = Ji+1 for any i < b − 1, item (3) easily
follows; see Figure 1.

Now we analyze the first return map. After scaling by 1/|Jn| = 1/β, the first return map
to Jn is rotation by (bβ − 1)/β = −G(β). Therefore, by restricting to the further sub-interval
Jnew and rescaling by 1/|Jnew|, one can check that the first return map to Jnew is rotation by
βnew = −G(β)/(1 − G(β)). This is essentially a simple case of Rauzy–Veech induction. See the
next several paragraphs for more details. A direct computation verifies item (4), i.e.

βnew = −G(β)/(1−G(β)) = −[0; c, . . .].

Next we compute the sequences Fnew
+ ,Fnew

− ,Fnew
0 . Note that by item (2) tkJ(Jnew) is a sub-interval

of Jn+k sharing its right endpoint for 0 ≤ k ≤ n and tkJ(Jnew) is a sub-interval of Jk−(n+1) sharing
its left endpoint for n+ 1 ≤ k ≤ 3n+ 1; see Figure 1.

In particular, t2n+1
J (Jnew) lies in Jn sharing its left endpoint, and we observe that this completes

the first return to Jnew by t2n+1
J for x ∈ Jnew[βnew, 1). Counting for which 0 ≤ k ≤ 2n we have

tkJ(x) on the left or right of J(1/2), we observe that, for x ∈ Jnew[βnew, 1/2), the sequence Fnew(x)
is equal to Fnew

+ defined as in (5), i.e.

Fnew
+ = F+ · Fn− · F0 · Fn+;

and for x ∈ Jnew[1/2, 1), the sequence Fnew(x) is equal to Fnew
− as in (5), i.e.

Fnew
− = Fn+1

− · F0 · Fn+.

On the other hand, any x ∈ Jnew[0, βnew) also returns to Jn for the first time via t2n+1
J but lands

in Jn \ Jnew = t2n+1
J (Jnew[0, βnew)). After another 2n+ 2 iterations of tJ , x finally returns to Jnew

and the additional sequence of f -values is Fnew
0 as in (5), i.e.

Fnew
0 = F+ · Fn+1

− · F0 · Fn+.
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Indeed, after the first return to Jn (i.e. 2n+ 1 iterations of tJ), x lands to the right of 1/2 for the
next n+ 1 iterations of tJ in J rather than n times as before, since tn+1

J (Jn \ Jnew) = Jb. Finally,
the last n+ 1 iterations take such x back to Jnew and x stays on the left of 1/2 until it is back.

Therefore, for x ∈ Jnew[0, βnew), we see that Fnew(x) is the concatenation Fnew
+ ·Fnew

0 as claimed
in item (5). The computations above in these three cases together verify item (5), where the total
sums of the sequences Fnew

+ ,Fnew
− ,Fnew

0 are 1,−1, 0, respectively, as an immediate corollary of the
expressions in (5) and the total sums of F+,F−,F0 given in Assumption 2.4. �

Now consider the partial sum sequences Snew
+ and Snew

− for the sequences Fnew
+ and Fnew

− , respec-
tively. We estimate the upper and lower bounds of these partial sum sequences:

Mnew
+ := max Snew

+ , mnew
+ := min Snew

+ , Mnew
− := max Snew

− , mnew
− := min Snew

− .

Lemma 2.6. For the sequences Fnew
+ , Fnew

− and the integer n defined as in Lemma 2.5, assuming
the total sums of F+, F−, and F0 to be 1,−1, 0 respectively as in Assumption 2.4, and assuming
n ≥ 2 (i.e. b ≥ 5), we have

• Mnew
+ ≥M+;

• mnew
+ ≤ m− − (n− 2);

• Mnew
− ≥M−;

• mnew
− ≤ m− − n;

Proof. These easily follow by inspection and the fact that Σ+ = +1,Σ− = −1. As Fnew
+ starts with

the sequence F+, we note that S+ is a prefix of the sequence Snew
+ , which verifies the first bullet.

The third bullet follows similarly.
For the second bullet, consider the expression

Fnew
+ = (F+ · Fn−1

− ) · F− · (F0 · Fn+).

The sequence F+ ·Fn−1
− has total sum Σ+ + (n− 1)Σ− = −(n− 2), so for the subsequence F− after

these terms, its partial sum sequence S− shifted by −(n − 2) appears as a subsequence of Snew
− ,

which implies the second bullet.
The last bullet can be shown analogously, as the sequence Fnew

− starts with (F−)n ·F−, where the
part in parentheses has total sum nΣ− = −n. �

Second case: β < 0

We now consider the case β < 0. Denote γ = −β. Then the first return map to J is tJ(J(x)) =
J(x− γ mod 1). The case here is essentially just mirroring the case above, as now we are rotating
to the left. For clarity, we include some details below. Define the sequences F(x) and S(x) as before
for any x ∈ J and let Σ(x) be the total sum of F(x). Here are the remaining assumptions for the
case β < 0.

Assumption 2.7. There are sequences F+,F−,F0 with total sums Σ+ = 1,Σ− = −1,Σ0 = 0,
respectively, such that

• For x ∈ J [0, γ) we have F(x) = F+ · F0.
• For x ∈ J [γ, 1/2) we have F(x) = F+.
• For x ∈ J [1/2, 1) we have F(x) = F−.

We denote the first coefficient by b = b1/γc, and express it as b = 2n + 1 for some n ≥ 2. We
again partition J into intervals

J0 = J [1− γ, 1), J1 = J [1− 2γ, 1− γ), . . . , Jb = J [0, 1− bγ),

and we have tJ(Ji) = Ji+1 for 0 ≤ i < b− 1. The interval Jb has length γG(γ).
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1
2 J0J1J2J3J4J5

J2 \ Jnew = t−3J (J5)
t3J(Jnew)t4J(Jnew)

JnewtJ(Jnew)t2J(Jnew)

Figure 2. The decomposition of J into Ji’s when b = 2n+ 1 = 5 for n = 2 and the
orbit of Jnew under iterations of tJ , for β < 0.

Our aim is again to find a sub-interval Jnew ⊂ J containing 1/2 and symmetric about 1/2, for
which the first return to Jnew inherits nice properties regarding the sequence Fnew(x) of f -values
and the sequence Snew(x) of partial sums, defined just as in the previous case.

Lemma 2.8. Suppose there is a sub-interval J ⊂ [0, 1) with first return map tJ satisfying Assump-
tions 2.2 and 2.7 with β = −γ = −[0; b, c+ 1, . . .] < 0, where c ≥ 3. Denote b = 2n+ 1 with n ≥ 1.
Then with notation as above, the sub-interval Jnew ⊂ J given by

Jnew := J

[
1

2
− 1

2
γ(1−G(γ)),

1

2
+

1

2
γ(1−G(γ))

)
.

has the following properties:
(1) Jnew is symmetric about 1/2 of length γ(1−G(γ))|J |.
(2) Jnew is a sub-interval of Jn, the left endpoints of Jnew and Jn are the same, and the right

endpoint of Jnew has distance γG(γ)|J | = |Jb| from the right endpoint of Jn.
(3) The image of Jn \ Jnew under n+ 1 iterations of tJ is Jb.
(4) Re-scaling by 1/|Jnew|, the first return map to Jnew is rotation by

βnew := G(γ)/(1−G(γ)) = [0; c, . . .].

(5) There are sequences

Fnew
+ := Fn+1

+ · F0 · Fn−, Fnew
− := F− · Fn+ · F0 · Fn−, and Fnew

0 := F− · Fn+1
+ · F0 · Fn−

with total sums 1,−1, 0, respectively, satisfying:
• whenever x ∈ Jnew[0, 1/2) we have Fnew(x) = Fnew

+ ,
• whenever x ∈ Jnew[1/2, 1− βnew) we have Fnew(x) = Fnew

− ,
• whenever x ∈ Jnew[1− βnew, 1) we have Fnew(x) = Fnew

− Fnew
0 .

Proof. The proof is almost the same as that of Lemma 2.5, by symmetry; see Figure 2. So we just
summarize a few key points below. Items (1)–(3) are just direct computations as before, noting
that 1/2 lies in the interval Jn but |Jb|-closer to its left endpoint this time.

As in the previous case, after scaling by 1/|Jn| = 1/γ, the first return map to Jn is rotation by
(1− bγ)/γ = G(γ), which is now positive. Thus, by restricting further to the sub-interval Jnew and
rescaling by 1/|Jnew| instead, the first return to Jnew is rotation by βnew = G(γ)/(1−G(γ)) as in
item (4).

Item (5) follows by an analysis of first returns to Jnew, which is just mirroring the case of β > 0:
the interval t2n+1

J (Jnew) lies in Jn sharing the right endpoint, completing the first return to Jnew for
all x ∈ Jnew[0, 1−βnew), and the sequence of f -values depends on whether x lies on the left or right of
1/2, which only changes the first term (F±) in the concatenation. For those x ∈ Jnew[1−βnew, 1), it
takes another 2n+2 iterations of tJ to return to Jnew, resulting in the additional sequence Fnew

0 . �

As before, for the partial sum sequences S+ and S− denote

M+ := max S+, m+ := min S+, M− := max S−, m− := min S−,

and similarly for the partial sum sequences Snew
+ and Snew

− by adding superscripts everywhere in the
above equations.

The proof of the following lemma is similar to that of Lemma 2.6, using the expressions for Fnew
+

and Fnew
− in Lemma 2.8.
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Lemma 2.9. For the sequences Fnew
+ , Fnew

− , and the integer n defined as in Lemma 2.8, assuming
the total sums of F+, F−, and F0 to be 1,−1, 0, respectively, as in Assumption 2.7, and assuming
n ≥ 2, we have

• Mnew
+ ≥M+ + n;

• mnew
+ ≤ m+;

• Mnew
− ≥M+ + (n− 2);

• mnew
− ≤ m−.

Finally we can prove Proposition 2.1.

Proof of Proposition 2.1. We inductively construct Ii and check the first three items as follows. For
the base case i = 1, set I1 = [0, 1) and β1 = α. Then the three items are either obvious or vacuous.
Since the first coefficient of α is odd, Assumptions 2.2 and 2.4 hold for the rotation tJ = t on
J = I1, where F+ = {1}, F− = {−1}, and F0 = ∅ is the empty sequence. By Lemma 2.5, we have
a sub-interval I2 := Jnew symmetric about 1/2 of length less than α1|I1|, for which the first return
map is rotation by βnew = −α2, where α2 is defined in formula (2.1).

Note that the first return map on I2 with the sequences Fnew
+ , Fnew

− , and Fnew
0 from Lemma 2.5

satisfies Assumptions 2.2 and 2.7. Thus Lemma 2.8 produces a sub-interval I3 symmetric about 1/2
of length less than α2|I2|, for which the first return map is rotation by α3, with new sequences of
f -values satisfying Assumptions 2.2 and 2.4.

We continue this process to define Ii inductively, alternating between applications of Lemma 2.5
and Lemma 2.8 to Ii with i odd and even, respectively. Namely, given Ii and αi, define Ii+1 = Inew

i
and αi+1 = αnew

i . Item (5) in Lemmas 2.5 and 2.8 ensures item (3) in Proposition 2.1.
Define inductively Fi+, Fi−, Fi0 as the sequences of f -values for first returns to Ii, using Fi+1

± =

(Fi±)new and similarly for Fi+1
0 . Let Si± be the sequences of partial sums of Fi±. Let M i

± and mi
±

be the bounds on the partial sums Si± estimated in Lemmas 2.6 and 2.9.
Finally we prove (4). We first prove below that there are points tk(1/2) ∈ I1 in the forward

orbit of 1/2 with Sk(1/2) equal to any given integer m. We will explain at the end how to find
such points in Ij for any j ∈ Z+ instead of I1. Note that the sequence Si− consists exactly of the
Birkhoff sums of 1/2 that occur before 1/2 returns to Ii for the first time. We have M i

− = max Si−
and mi

− = min Si−. Thus, it suffices to prove that M i
− → +∞ and mi

− → −∞ as i→∞.
Since the first coefficient ai − 1 (or a1 when i = 1) of αi is odd and at least 5 by assumption,

ni := (ai − 2)/2 ≥ 2 (and n1 := (a1 − 1)/2 ≥ 2). We have m2i
− ≤ m2i−1

− − n2i−1 ≤ m2i−1
− − 2

by Lemma 2.6 and m2i+1
− ≤ m2i

− by Lemma 2.9. It follows that mi+2
− ≤ mi

− − 2 for all i and
hence limmi

− = −∞. For a similar reason, limM i
+ = +∞, which we now use to deduce that

limM i
− = +∞. In fact, we have M2i+2

− ≥M2i+1
− ≥M2i

+ + (n2i − 2) ≥M2i
+ by Lemmas 2.6 and 2.9.

Thus limM i
− = +∞ and limmi

− = −∞ as claimed.
The proof above works in the same way after replacing α by αj , I1 by Ij , f by f j , and t by tj

for any j ∈ Z+. That is, there is k ∈ Z+ such that tkj (1/2) ∈ Ij with tj-Birkhoff sum equal to m.
As tj is the first return map to Ij , such a point in Ij is also in the forward orbit of 1/2 under t, and
its tj-Birkhoff sum is equal to the corresponding t-Birkhoff sum, which completes the proof. �

The same method can be used to study the Birkhoff sum along other orbits. We give a sketch
for one explicit example below, which we use later to find a leaf that is not dense in Theorem 1.3.

Example 2.10. Fixm ≥ 2. Let α = [0; 2m+1, 2m+2, 2m+2, · · · ] (i.e. a1 = 2m+1 and an = 2m+2
for all n ≥ 2), which satisfies the assumption of Theorem 1.1. We consider the orbit of x = (1+α)/2
and claim that Sn(x) ≤ 0 for all n ∈ Z. Here we set S0(x) = 0 and S−n(x) = −

∑n
k=1 f(t−k(x)) for

any n > 0 so that Tn(x, s) = (tn(x), s+ Sn(x)) for all n ∈ Z. The claim implies that the (forward
and backward) orbit of (x, 0) under iterations of T always has non-positive second coordinate.
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We sketch a proof of the claim. First, note that we can take care of the backward orbit by
symmetry. In fact, for our particular x we have t−(n+1)(x) = 1 − tn(x) for all n > 0, i.e. the
backward orbit (starting at t−1(x) = (1−α)/2) and the forward orbit (starting at x) are symmetric
around 1/2, and thus the sequences of f -values along the forward and backward orbits differ by
a negative sign. It follows that S−n(x) = Sn(x) for all n ∈ Z+. So it suffices to check that
maxn≥1 Sn(x) ≤ 0.

To compute Sn(x) with n > 0, we use the same renormalization procedure with the nested intervals
I1 ⊃ I2 ⊃ · · · as above. Let Fi± and Fi0 (resp. Si± and Si0) be the sequence of f -values (resp. partial
sums) defined inductively as in the proof above. Let M i

± = max Si± and M i
0 = max Si0. A direct

computation shows that tm(x) = 1− 1
2αG(α) and t2m+1(x) = (m+1)α− 1

2αG(α), so the forward orbit
enters I2 for the first time after 2m+ 1 iterations of t. In I2-coordinates, we have t2m+1(x) = I2(y)
with

y =
[(m+ 1)α− 1

2αG(α)]− [mα+ αG(α)]

α(1−G(α))
=
α− 3

2αG(α)

α(1−G(α))
= 1− 1

2
β,

where β = G(α)/(1−G(α)) and the first return map t̄2 : I2 → I2 is rotation by −β in I2-coordinates
by Lemma 2.5. Our choice of α makes β = α. Then applying the first return map t̄2 another m times
we arrive at I2(1− (m+ 1/2)β), at which point we land in I3 for the first time. In I3-coordinates,
this is I3(z) with

z =
[1− (m+ 1/2)β]− [1− (m+ 1)β]

β(1−G(β))
=

1

2
(1 + γ),

where γ = G(β)/(1 − G(β)). Noting that γ = β = α by our choice of α, we see z = x, so are
are now exactly at I3(x), and the first return map to I3 is rotation by γ = α in I3-coordinates by
Lemma 2.8. Thus from here on the analysis repeats. It follows that the sequence of f -values along
the forward orbit is given by

(2.2) [(F1
−)m+1 · (F1

+)m · (F2
−)m] · [(F3

−)m+1 · (F3
+)m · (F4

−)m] · · ·

The Birkhoff sums are the partial sums of this sequence, and to analyze them we compute Mk
±

and Mk
0 for all k ≥ 1. The idea of the computation is similar to the proof of Lemmas 2.6 and 2.9,

which yields the following recursive formulas for our particular α:

M2k
+ = M2k−1

+ , M2k
− = M2k−1

− , M2k
0 = M2k−1

+ ,

and
M2k+1

+ = M2k
0 +m+ 1, M2k+1

− = M2k
0 +m− 1, M2k+1

0 = M2k
0 +m,

for all k ≥ 1. Then by induction, we have

M2k−1
+ = (m+ 1)k −m, M2k−1

− = (m+ 1)k −m− 2, M2k−1
0 = (m+ 1)k −m− 1,

for all k ≥ 2 and

M2k
+ = (m+ 1)k −m, M2k

− = (m+ 1)k −m− 2, M2k
0 = (m+ 1)k −m,

for all k ≥ 1. Now by examining the sequence in formula (2.2) bracket by bracket, it is straightfor-
ward to check that maxn≥1 Sn(x) = −1.

3. Background on laminations and rays

We recall some background on geodesic laminations and geodesic rays on hyperbolic surfaces.
Let X be a complete oriented hyperbolic surface without boundary. We will typically consider the
case that X is of the first kind. This means that the limit set of π1(X) acting on the universal cover
X̃ ∼= H2 is the entire Gromov boundary ∂X ∼= S1. A geodesic lamination Λ on X is a closed subset
of X consisting of pairwise disjoint, simple, complete geodesics. Each such complete geodesic is
called a leaf of Λ.
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In Section 4, we will construct laminations on hyperbolic surfaces using train tracks, weight
systems, and foliated rectangles. Here is the necessary background. A train track τ on X is a
locally finite graph embedded on X with the following additional structure. At any vertex v of τ ,
the set B(v) of edges incident to v has a circular order induced from the orientation of X. We
have a partition of B(v) into a pair of non-empty sets Bi(v) and Bo(v) which we call incoming and
outgoing, respectively, such that the total order defined by any g ∈ Bo(v) (resp. g ∈ Bi(v)) restricts
to the same order on Bi(v) (resp. Bo(v)) independent of g. For e, f ∈ Bi(v), we write e < f if
and only if (e, f, g) is counterclockwise at v for any g ∈ Bo(v). For e, f ∈ Bo(v), we write e < f if
and only if (e, f, g) is clockwise at v for any g ∈ Bi(v). The edges of τ are called branches and the
vertices of τ are called switches. A train path t on τ is a finite or infinite path immersed in τ with
the property that at every switch v, t enters v through Bi(v) and exits v through Bo(v), or vice
versa.

A weight system on τ is a function w : B(τ)→ R+ satisfying the switch equations: for any switch
v of τ we have ∑

e∈Bi(v)

w(e) =
∑

f∈Bo(v)

w(f).

Associated to the pair (τ, w) we construct the following union of foliated rectangles. For each
b ∈ B(τ) we assign a rectangle R(b) = [0, w(b)]× [0, 1]. We glue the rectangles at each switch v as
follows. For any switch v of τ we consider the interval I(v) = [0, `] where

` =
∑

b∈Bi(v)

w(b) =
∑

b∈Bo(v)

w(b).

Suppose that b1 < . . . < bn are the outgoing branches at v. Then I(v) is divided into consecutive
closed intervals I1, . . . , In of lengths w(b1), . . . , w(bn), respectively, where 0 ∈ I1 and the Ii’s overlap
only on their boundaries. Then we glue [0, w(bi)] × {0} ⊂ R(bi) via an orientation-preserving
isometry to the interval Ii. Similarly, I(v) is also divided into intervals J1, . . . , Jm of lengths
w(c1), . . . , w(cm) where c1, . . . , cm are the incoming branches at v. Then we glue [0, w(cj)]× {1} ⊂
R(cj) to Jj via an orientation-preserving isometry. The union of foliated rectangles F for (τ, w) is
the quotient of the disjoint union of the rectangles R(b) and intervals I(v) by these gluing relations.

Each rectangle R(b) of F is foliated by the vertical segments {v} × [0, 1] for v ∈ [0, w(b)]. This
endows F with the structure of a singular foliation. The singularities are the points where at least
three rectangles of F meet. In fact, at most four rectangles can meet, in which case we have two
rectangles on both sides of an interval I(v). By thickening I(v) to a rectangle, we assume exactly
three rectangles meet at each singularity. A leaf ` of F is an embedding of R into F that is the
union of a sequence

. . . σ−1σ0σ1 . . .

of vertical line segments σi = {vi}× [0, 1] ⊂ R(bi) with consecutive segments meeting at endpoints,
and which satisfies the following conditions. First, we require that . . . b−1b0b1 . . . is a train path of τ .
Second, we have an additional requirement when the leaf contains at least two singularities, which
we now describe. Given an orientation of a leaf `, singularities on ` fall into two types, merging or
splitting; see Figure 3. Moreover, singularities along ` must alternate between the two types as they
arise from gluing of rectangles. At a merging singularity, there are two possible local pictures of `,
namely merging from the left or right branch. Similarly, at a splitting singularity, ` splits to the
left or right branch. For a leaf ` containing at least two singularities, we require a choice of left or
right : either ` always merges from the left and splits to the left, or it always merges from the right
and splits to the right; see Figure 3. A leaf will be called singular if it contains a singularity and
non-singular otherwise. We will use unions of foliated rectangles in Section 4 to construct geodesic
laminations on hyperbolic surfaces.

Finally, suppose that X has an isolated puncture p. A ray ` is any complete simple geodesic
asymptotic to p on at least one end. The ray ` is a loop if it is asymptotic to p on both ends. A
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Figure 3. Left: two singular leaves that split after passing through a splitting
singularity; middle: two singular leaves that merge after passing through a merging
singularity; right: a singular leaf (indicated by the arrows) passes through three
singularities and always splits to the left and merges from the left.

ray is filling if it intersects every loop based at p. Denote by R(X; p) the graph whose vertices are
the rays based at p, and whose edges join pairs of rays that are disjoint. By [5], the graph R(X; p)
consists of uncountably many connected components. Among these components, exactly one is of
infinite diameter and Gromov hyperbolic. The remaining components are cliques of rays. These
cliques consist of pairwise disjoint rays, each of which intersects every ray not lying in the clique.
A ray in such a clique connected component is called high-filling. The set of cliques of high-filling
rays is identified with the Gromov boundary ∂R(X; p) [5, Theorem 6.3.1]. If a ray is filling but not
high-filling then it is called 2-filling [5, Lemma 5.6.4]. Thus there is a trichotomy: a ray is either not
filling, 2-filling, or high-filling. As such, 2-filling rays can be thought of as fake boundary points for
the graph R(X; p), with properties mimicking those of high-filling rays. Finally, note that a priori
the graph R(X; p) depends on the particular hyperbolic metric X. However, if Y is a different first
kind complete hyperbolic surface homeomorphic to X, then there is a natural bijection between the
rays on X based at p and the rays on Y based at p; see the end of Part 1 in [5]. This bijection
preserves the property of a ray being a loop, 2-filling, high-filling, etc. Hence we may actually define
R(S; p) := R(X; p) where S is the underlying topological surface to X, and the graph R(S; p) is
well-defined independent of a particular first kind hyperbolic metric on S. When S is the plane
minus a Cantor set then 2-filling rays exist, and the construction can be applied to many other
surfaces of infinite type [7]. Theorem 1.4 now confirms their existence on any infinite type surface
with at least one isolated puncture.

4. Laminations

We consider the train track τ illustrated in Figure 4. The weights of three branches are labeled
for some α ∈ (0, 1). The weights of the other branches are determined by these via the switch
equations. Associated to these weights on τ , we construct the standard union of foliated rectangles
F . There is a single branch of weight 1 in τ which gives rise to a rectangle R of F .

The train track τ has an infinite cyclic cover τ̃ which is pictured in Figure 5. The weights on τ
pull back to weights on τ̃ , some of which are labeled in Figure 5.

We consider the union of foliated rectangles F̃ for τ̃ with the described weights; see Figure 6. Then
F̃ is an infinite cyclic cover of F . The branches of τ̃ of weight 1 give rise to a sequence of rectangles
. . . , R−1, R0, R1, . . . in F̃ which are indexed by Z and cover the rectangle R of F corresponding to
the branch of τ with weight 1. We choose the numbering so that there is a rectangle joining Ri to
Ri+1 and a rectangle joining Ri to Ri−1 for each i, both with width 1/2. For the rectangle of width
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α/2

(1− α)/2
1

Figure 4. A weighted train track τ . The second return map to a horizontal interval
in the rectangle R of the union of foliated rectangles F is a rotation by α.

1−α
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2

1−α
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α
2
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α
2

1−α
2

α
2

Figure 5. The infinite cyclic cover τ̃ of τ .

s−1 s0 s1

s2

R−1 R0 R1 R2

Figure 6. Part of the union of foliated rectangles F̃

1/2 joining Ri and Ri+1, one of its boundary leaves (the lower boundary in Figure 6) extends to a
singular leaf `i in F̃ passing through the singularities si and si+1. The leaves `i−1 and `i share a
ray ri starting at si. The following consequence of Corollary 1.2 is crucial to our construction of an
infinite clique of 2-filling rays.

Lemma 4.1. Suppose that α ∈ (0, 1) satisfies the conditions of Theorem 1.1. Then for each i, the
ray ri of F̃ is dense in F̃ , hence so is the singular leaf `i.

Proof. To prove this, we parameterize the disjoint union
⋃
i∈ZRi by [0, 1]2 × Z, where Ri is iso-

metrically identified with the unit square [0, 1]2 and the leaves of F̃ intersect the rectangles [0, 1]2

in vertical segments {x} × [0, 1]. We further choose the orientation on the vertical segments such
that the singularity si is given by (1/2, 0, i) in these coordinates and each ri starts from si by going
upwards; see Figure 6.

After ri passes through Ri for the first time, it travels downwards in Ri along the vertical segment
with coordinate (1− α)− 1/2 = 1/2− α since α < 1/2 as in Theorem 1.1. Thus ri passes through
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(1/2−α, 0, i) to exit Ri. At this point, ri will enter Ri−1 since 1/2−α < 1/2, and it travels upwards
starting at (1− 1/2 + α, 0, i− 1) = (1/2 + α, 0, i− 1).

In general, if at some point the ray ri is traveling upwards in some Rj along the vertical segment
with coordinate x ∈ (0, 1), it hits the top of Rj and then starts to travel downwards in Rj along
{b(x)} × [0, 1], where

b(x) =

{
1− α− x if x < 1− α,
2− α− x if x > 1− α.

Note that b(x) = 1 − t(x), where t = tα is the rotation by α as in the introduction, that is,
t(x) ∈ (0, 1) is the fractional part of x + α. At this point, ri exits Rj at (b(x), 0, j) and enters Rj′
with j′ = j + 1 if b(x) > 1/2 and j′ = j − 1 if b(x) < 1/2. That is, j′ = j + f(t(x)) for the function
f = χ[0,1/2) − χ[1/2,1) as in the definition of the transformation T in Theorem 1.1. Moreover, ri
enters Rj′ by traveling upwards along the vertical segment with coordinate 1− b(x) = t(x).

In the calculations above, we ignored all boundary cases since we only care about x = tn(1/2)
for some n ≥ 0 and α is irrational.

It follows from the analysis above that ri visits the n-th rectangle with entry point(
tn−1(1/2), 0, i+

n−1∑
j=1

f(tj(1/2))
)
.

The sum
∑n−1

j=1 f(tj(1/2)) is equal to Sn(1/2)− f(1/2) = Sn(1/2) + 1 where Sn is the n-th Birkhoff
sum defined in the introduction. Thus, ri contains the points

(
tn−1(1/2), 0, i + 1 + Sn(1/2)

)
for

n ≥ 1, and the pairs (tn−1(1/2), i+ 1 +Sn(1/2)) are dense in [0, 1]×Z by Corollary 1.2. To see the
last claim, note that for each m ∈ Z, the set of n ≥ 0 with i+ 1 +Sn(1/2) = m is Σ(1/2,m− i− 1),
so the pairs above contain (tn(1/2),m) for all n ∈ Σ(1/2,m− i− 1)− 1 except possibly n = 0, and
the first coordinates of such pairs are dense by Corollary 1.2. This proves that ri is dense in Rm for
any m ∈ Z and hence dense in the whole foliation F̃ . This completes the proof of Lemma 4.1. �

We now define a geodesic lamination on an infinite type hyperbolic surface. The track τ̃ may be
folded to yield the train track τ̂ pictured in Figure 7. This track τ̂ may in turn be embedded in any
infinite type surface Σ with at least one isolated puncture p; see the left of Figure 8.

Figure 7. The track τ̃ folded to yield τ̂ .

In the left of Figure 8, the train track τ̂ has been embedded in Σ and parallel branches have been
collapsed, to yield the track σ. In the figure every tiny black disk represents a subsurface of Σ with a
single boundary component, corresponding to the boundary of the black disk. We require each such
subsurface to have either positive genus or at least two punctures. Furthermore, in Σ the border
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p

γ0

Σ0
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Σ1
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Σ2

s3s−3 Q3

γ3

Σ3

Σ

p

R∞

Figure 8. Left: The track σ obtained by embedding τ̂ on an infinite type surface
Σ and collapsing parallel branches. Right: The non-filling ray R∞ on Σ.

line pictured in the left of Figure 8 is glued to itself by a reflection across the central vertical line,
so that Σ has no boundary. With this identification, each dotted horizontal line segment represents
an essential simple closed curve γi on Σ. Thus, the surface Σ with the black disks removed is a flute
surface Σ′. Any infinite-type surface without boundary and with at least one isolated puncture can
be realized this way by appropriately choosing the topological type of the subsurfaces represented
by the black disks.

Lemma 4.2. For any orientable surface S of infinite type with at least one isolated puncture p,
there is a sequence of surfaces {Di}i≥1 each with one boundary component and either positive genus
or at least two punctures, so that the surface (Σ, p) above with the black disks homeomorphic to the
Di’s is homeomorphic to (S, p).

Proof. Recall the classification of (possibly non-compact) orientable surfaces without boundary [9].
Each surface S has a space of ends E, which is totally disconnected, compact, and metrizable. The
non-planar ends form a closed subset Eg ⊂ E, which is nonempty if and only if S has infinite genus.
Then the classification states that two surfaces are homeomorphic if and only if they have the same
genus (possibly infinite) and the pairs of spaces of ends (E,Eg) are homeomorphic. Moreover, given
any pair (E,Eg) with E totally disconnected, compact, and metrizable and Eg ⊂ E closed, and
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given n ∈ Z≥0 ∪ {∞} so that n < ∞ iff Eg = ∅, there is an orientable surface S with genus n and
spaces of ends homeomorphic to (E,Eg). We say S is of infinite type if either E is an infinite set
or Eg is nonempty.

Consider any S of infinite type with an isolated puncture p, and denote its space of ends by E.
Since p is isolated, E \ {p} is clopen. There are two cases:

(1) Suppose E is infinite. Then there is an accumulation point x ∈ E and a sequence of nested
clopen neighborhoods E \ {p} = V1 ⊃ V2 ⊃ · · · of x with ∩iVi = {x}. Up to relabelling,
we may assume that Ui := Vi \ Vi+1 contains at least two points for all i ≥ 1. For each
i ≥ 1, there is a surface Si with space of ends homeomorphic to (Ui, Ui ∩ Eg). Moreover, if
Ui ∩ Eg = ∅, then we can choose Si to have any genus ni ∈ Z≥0, which we now specify. If
S has finite genus, we may choose the ni’s so that

∑
ni is equal to the genus of S. If S has

infinite genus, for each i with Ui ∩Eg = ∅, we choose ni = 0 if x is planar and ni > 0 if x is
non-planar. Let Di be Si with an open disk removed. Then each Di either has positive genus
or has at least two punctures. Choose the black disks in the construction of our surface Σ
above to be homeomorphic to the surfaces Di. Then (Σ, p) is homeomorphic to (S, p) by
the classification of surfaces.

(2) Suppose E is finite. Then Eg must be nonempty for S to be of infinite type. Then E =
Eg tE′ t {p} where E′ consists of planar ends other than p. For 1 ≤ i ≤ |Eg| − 1, let Si be
the surface of infinite genus and exactly one (non-planar) end, i.e. the Loch Ness monster.
For i = |Eg|, let Si be the surface of genus one with |E′| punctures. For i > |Eg|, let Si
be the torus. Now for each i ∈ Z+, let Di be Si with an open disk removed. Choose the
black disks in the construction of our surface Σ above to be homeomorphic to the surfaces
Di. Then Σ has infinite genus and has the same pair of spaces of ends as S, so again (Σ, p)
is homeomorphic to (S, p) by the classification of surfaces.

�

The simple closed curves {γi}i≥0 cut Σ′ into an infinite sequence of finite type subsurfaces {Σi}i≥0.
For each i ≥ 1 (resp. i = 0), the surface Σi is bounded by two (resp. one) γi’s together with 7
(resp. 2) boundary components of black disks (resp. and a puncture p). Thus each Σi admits a
complete hyperbolic structure with geodesic boundary components all of length 1. In the sequel, we
choose the metric on Σi with the additional property that the (finitely many) train paths in σ ∩Σi

have lengths bounded above independent of i, which can be done for instance by making Σi (i ≥ 1)
all isometric under the obvious translation in Figure 8. Since each black disk represents a surface
with positive genus or at least two punctures, it admits a hyperbolic structure of the first kind so
that the boundary is a geodesic of length 1. Hence by gluing, we can endow Σ with a complete
hyperbolic metric of the first kind so that

(1) each γi is a closed geodesic of length 1,
(2) the train paths in σ ∩ Σi have lengths bounded above independent of i.

Let Σ̃ ∼= H2 be the universal cover of Σ. Consider the preimage σ̃ of σ and the collection L of
lifts of all γi’s to Σ̃. We notice the following fact:

Lemma 4.3. For the choice of hyperbolic metric on Σ above, there are uniform constants K,C > 0
such that any bi-infinite train path of σ̃ is a (K,C)-quasi-geodesic. In particular, it limits to two
distinct points on the Gromov boundary ∂Σ̃.

Proof. We show this by looking at the intersections with lines in L. Each lift of γi is a bi-infinite
geodesic in L. Note that there is a lower bound on the distance between any two lines of L by
the collar lemma since the γi’s have bounded length. Moreover, the segment between any two
consecutive intersections of the train path with L is a lift of a train path in σ ∩ Σi for some i, and
thus its length is bounded above by a uniform constant due to our choice of metric.
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We claim that any train path of σ̃ with endpoints on two lines of L is not homotopic, relative to
endpoints, into a line in L. Given the claim, any bi-infinite train path of σ̃ intersects a bi-infinite
non-backtracking sequence of geodesics in L at a uniformly bounded linear rate, from which the
lemma follows.

The claim above follows from the observations below. There are only two homeomorphism classes
of pairs (Σi,Σi ∩ σ). Moreover, in each track Σi ∩ σ, there are finitely many train paths. Finally,
by the choice of γi’s, no train path of Σi ∩ σ is homotopic into ∂Σi via a homotopy keeping the
endpoints of the train path on the boundary, and no two distinct train paths of Σi∩σ are homotopic
via such a homotopy. �

Consequently any bi-infinite train path t of σ̃ may be straightened to a geodesic α in ∂Σ̃ with the
same endpoints on the Gromov boundary. Moreover, the proof above implies that the sequences
of lines in L intersecting α and t, respectively, are identical. In addition, the intersections with L

cut both α and t into segments of length bounded above and below by uniform constants. We also
see from the last observation made in the proof above that if t1, t2 are train paths in σ̃ such that ti
joins a line Li ∈ L to a line L′i ∈ L, then t1 and t2 are equal if and only if L1 = L2 and L′1 = L′2.
The following lemmas can be deduced from these facts.

Lemma 4.4. Let {ti}∞i=1 be bi-infinite train paths of σ̃ straightening to geodesics {αi}∞i=1 of Σ̃. If
α is a geodesic of Σ̃ such that αi → α, then α intersects infinitely many lines in L at each end.

Proof. Suppose this is not the case. Then one end of α projects to a geodesic ray in Σ disjoint from
the curves γj . Note that each αi projected to Σ is disjoint from the boundary curve of each black
disk in Figure 8. Hence the limiting ray above is also disjoint from such boundary components. So
the ray must be trapped in some Σj . This implies that there is an arbitrarily long geodesic segment
βi inside Σj in the projection of αi for i sufficiently large. This contradicts the observation we made
above, that αi is divided by L into segments of uniformly bounded length. �

Lemma 4.5. Let {ti}∞i=1 be bi-infinite train paths of σ̃ straightening to geodesics {αi}∞i=1 of Σ̃.
Suppose that α is a geodesic of Σ̃. Then αi → α if and only if α is also carried by σ̃ and for
any finite sub-path s of the train path t defining α, s is contained in ti for all large enough i. In
particular, the set of geodesics carried by σ̃ is closed in the space of geodesics of Σ̃.

Proof. We only focus on the less obvious direction: If αi converges to a geodesic α, then α is carried
by σ̃ and for any finite sub-path s of the train path t defining α, s is contained in ti for all large
enough i.

Each αi intersects a bi-infinite sequence of lines in L. By Lemma 4.4 and the fact that intersection
is an open condition, these sequences (with an appropriate choice of the 0-th term) are pointwise
eventually constant, with the limiting sequence equal to the lines in L intersecting α. As each
straightening αi intersects the same sequence of lines in L as the corresponding train path ti does,
the limiting sequence above determines a train path t carrying α with the desired properties. �

Lemma 4.6. Let s and t be bi-infinite train paths of σ̃ straightening to geodesics β and α. Then β
and α share an endpoint q ∈ ∂Σ̃ if and only if s and t share an infinite train path limiting to q.

Proof. We again focus on the less obvious direction: If β and α share an endpoint q ∈ ∂Σ̃, then
s and t share an infinite train path limiting to q. As in the proof above, α intersects the same
bi-infinite sequence of lines in L as t does. Note that the endpoints of these lines must converge to q
since lines in L are at distances uniformly bounded away from zero. This implies that this sequence
of lines would eventually all intersect the ray in β limiting to q, and vice versa. It easily follows
that s and t intersect the same sequence of lines in L at one end, determining the desired infinite
train path. �
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Now we define a geodesic lamination on Σ as follows. Recall that the weights on τ induce weights
on τ̃ . Via the union of foliated rectangles construction, the leaves of the rectangles glue to a set of
train paths on τ̃ and they correspond to a set T̃ of train paths on σ via the carrying map. Finally,
we consider the train path t∗ in σ which passes through each surface Σi (i > 0) exactly twice and
never returns. This is the train path parallel to the border line on the left side of Figure 8. We
define S := T̃ ∪{t∗}, a set of train paths on σ. By Lemma 4.3, we may straighten the train paths in
S to geodesics. Denote the resulting set of geodesics by Λ. Since the train paths in S do not cross,
neither do the geodesics of Λ.

Lemma 4.7. The set of geodesics Λ is closed as a subset of Σ. Therefore it is a geodesic lamination
on Σ.

We postpone the proof of Lemma 4.7 and first discuss the train paths in S in more detail. Any
nonsingular leaf of F̃ uniquely determines a train path in σ, and it is determined by any segment
of the leaf contained in a foliated rectangle of F̃ . Now we describe train paths of T̃ corresponding
to singular leaves of F̃ . Note that there is a sequence of quadrilaterals Qi in the complement of
the train track σ; see the left of Figure 8. In each Qi, i ≥ 1, a pair of singularities si and s−i sit
at the two opposite horizontal corners, corresponding to the singularities si and s−i+1 in Figure 6.
For each i ∈ Z+, there is a unique singular leaf `i containing si and si+1 and a unique singular leaf
`−i containing s−i and s−i−1. Moreover, there is a singular leaf `0 containing s−1 and s1. Thus, we
have a collection . . . , `−1, `0, `1, . . . of singular leaves of F̃ indexed by the integers, corresponding to
the ones investigated in Lemma 4.1. This gives rise to a collection . . . , t−1, t0, t1, . . . of train paths
in S. Note that for each i ∈ Z, `i shares a ray with `i−1 and `i+1, respectively, so that ti shares a
half-infinite sub-train-path with ti−1 and ti+1, respectively.

For each i, the train path ti gives rise to a leaf Li of Λ, corresponding to the leaf `i in F̃ studied
in Lemma 4.1.

Proof of Lemma 4.7. Lift Λ to a set of geodesics Λ̃ on Σ̃. Let λ1, λ2, . . . be geodesics in Λ̃ converging
to the geodesic λ. By Lemma 4.5, λ is carried by σ̃. Let t be a train path of σ̃ straightening to λ.
If t projects to t∗ in Σ then λ is in Λ̃ by definition. Otherwise, t passes through some branch b on
the boundary of a quadrilateral in the complement of σ̃. Hence, ti passes through b for i sufficiently
large. Without loss of generality we assume that ti passes through b for every i.

Lift F̃ to a foliation of a subset of Σ̃. Then for each i, ti is the train path defined by a (possibly
singular) leaf of F̃ . That is, after collapsing the rectangles of F̃ to branches, and composing with
the carrying map to σ̃, we obtain ti. Thus, for each ti there is a unique vertical line segment
ui in the rectangle R(b) which the leaf corresponding to ti passes through. Up to passing to a
subsequence, the segments ui converge to a vertical segment u in R(b), and we may further assume
all segments ui lie on the same side of u, say the left side (for a chosen orientation of u). Let ri be
the (possibly singular) leaf defining ti (which passes through ui). Furthermore, let r be the (possibly
singular) leaf which passes through u, and, when given the orientation induced by u, merges from
or splits into the left rectangle at every singularity that it passes through (if there are indeed any
such singularities). Then ui converges to u, since for any finite sequence of rectangles that u passes
through, ui also passes through the same sequence for i sufficiently large. Hence ti converges to the
train path defined by u, which is therefore equal to t. In particular, λ is a leaf of Λ̃. �

The following lemma is the key to obtain our infinite clique of 2-filling rays.

Lemma 4.8. The complementary component to Λ containing p is a once-punctured ideal polygon
with countably infinitely many ends, exactly one of which is the limit of the others. The sides of the
ideal polygon are the leaves {Li}i∈Z.
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In order to prove Lemma 4.8, we look at some particular rays, which we denote as Ri with
i ∈ Z ∪ {∞}. We apologize for reusing the notation and warn the reader not to confuse them with
the rectangles Ri discussed earlier (which play no role in the rest of the paper).

First we define a ray R∞ with one end at the isolated puncture p. This is the geodesic ray
pictured on the right of Figure 8. It is non-proper and not filling (as defined at the end of Section
3). Observe that it is disjoint from Λ.

We also define a sequence of geodesic rays Ri for i ∈ Z\{0} as follows. The ray Ri is obtained by
following R∞ until it enters the quadrilateral Qi with ends corresponding to the singularities s±i.
Thereafter, it passes through si and follows the common half-infinite sub-train-path of ti−1 and ti
(if i > 0) or of ti and ti+1 (if i < 0). The path just described may be homotoped to be simple and
disjoint from any given leaf of Λ, and furthermore, none of its arcs in a component of Σ \ tiγi is
homotopic into the boundary. Hence the path may be straightened to a geodesic ray Ri; see Figure
9.

R1 R2 R3

R−1 R−2 R−3

R∞

Figure 9. The rays Ri and R∞. They enter the union of foliated rectangles at a
cusp and thereafter follow a leaf of the corresponding singular foliation (the dotted
lines in the figure). For ease of presentation, the picture has been “unwrapped” before
being embedded into Σ.

Now we prove Lemma 4.8.

Proof. Recall that the surfaces Σj are the complementary subsurfaces of the dotted curves γj and
black disks in Figure 8. We see that for i � 0 or i � 0, Ri and R∞ pass through many of the
surfaces Σj in the same order, and in each such Σj , the arcs of Ri and R∞ are homotopic, keeping
endpoints on the boundary. Hence we have Ri → R∞ as i→∞ and as i→ −∞. Furthermore, Ri
is asymptotic to Li and Li−1 if i > 0 and Ri is asymptotic to Li and Li+1 if i < 0. Finally, the rays
Ri occur in the order

R∞ < . . . < R2 < R1 < R−1 < R−2 < . . . < R∞

in the circular order on geodesics asymptotic to p.
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Lift R∞ to a ray R̃∞ in the universal cover Σ̃. Then R̃∞ has one endpoint at a lift p̃ of p on ∂Σ̃

and the other endpoint at a point z ∈ ∂Σ̃. Let g be a generator of the cyclic subgroup of π1(Σ)

fixing p̃. There is a unique lift R̃i of Ri based at p̃, between R̃∞ and g · R̃∞. Up to replacing g by
g−1, we see that R̃i → gR̃∞ as i→ +∞ and R̃i → R̃∞ as i→ −∞. Moreover, there is a lift L̃i, for
i ∈ Z, such that

• L̃0, R̃−1, R̃1 are the sides of an ideal triangle;
• L̃i, R̃i, R̃i+1 are the sides of an ideal triangle for i > 0;
• L̃i, R̃i, R̃i−1 are the sides of an ideal triangle for i < 0.

Consequently, R̃∞, gR̃∞, and the L̃i’s form the sides of a polygon with countably infinitely many
ends. Each of these ends is isolated except z and gz, which are limits of the others. After quotienting
by g, we obtain a once-punctured ideal polygon with a countable set of ends, exactly one of which
is the limit of the others, as claimed. �

Finally we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.4. By Lemma 4.2, any infinite type surface S with at least one isolated punc-
ture p is homeomorphic to our surface Σ by a suitable choice in the construction. Construct the
lamination Λ and use the notation as above. We see from Lemma 4.8 that every simple ray based
at p, except Ri for i ∈ {∞} ∪ Z \ {0}, intersects Li for some i ∈ Z. Moreover, Li has a half leaf
asymptotic to Ri, and this half leaf is dense in Λ by Lemma 4.1. Hence each Ri accumulates onto
Λ. Thus, every simple ray based at p, not contained in {Ri}i∈{∞}∪Z\{0} intersects Ri for every
i ∈ Z \ {0}. Thus each ray Ri is 2-filling, only disjoint from one non-filling long ray R∞, and
{Ri}i∈Z\{0} is an infinite clique of 2-filling rays. �

Proof of Theorem 1.3. Let S = Σ with the hyperbolic structure and lamination Λ as above. In
the construction of Λ, choose α = [0; 2m + 1, 2m + 2, 2m + 2, · · · ] as in Example 2.10 for some
m ≥ 2, which satisfies the assumptions of Theorem 1.1. Each leaf Li described above is dense in Λ
by Lemma 4.1, so Λ is topologically transitive. On the other hand, the full orbit we examined in
Example 2.10 has (forward and backward) Birkhoff sum always non-positive, so the corresponding
leaf misses infinitely many rectangles, and thus it is not dense. There is an obvious Z action on F̃
in Figure 6. It is straightforward to see that the Z-orbit of this leaf yields infinitely many distinct
non-dense leaves, which completes our proof. �
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