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Abstract. E. Breuillard showed that finite subsets F of matrices in
GLd(Q) generating non-virtually solvable groups have normalized height

ĥ(F ) ≥ εd, for some positive εd > 0. The normalized height ĥ(F ) is a
measure of the arithmetic size of F and this result can be thought of
as a non-abelian analog of Lehmer’s Mahler measure problem. We give
a new shorter proof of this result. Our key idea relies on the existence
of particular word maps in compact Lie groups (known as almost laws)
whose image lies close to the identity element.

1. Introduction

In [6], E. Breuillard proved what can be considered as a non-abelian ver-
sion of Lehmer’s problem about the Mahler measure of an algebraic number.
He showed that if a finite set F ⊂ GLd(Q) of invertible matrices with alge-
braic entries generates a group that is not virtually solvable, then its arith-
metic height (a measure of its arithmetic complexity) is bounded below by
an absolute constant εd > 0 independent of F . Some consequences of Breuil-
lard’s theorem include the existence of a lower bound for the exponential
growth of a non-virtually solvable group of GLd(C), a strong version of the
classical Tits alternative about existence of free subgroups in linear groups,
lower bounds in the girth of finite groups of Lie type and very recently some
results about the geometry of arithmetic locally symmetric spaces [11]. See
[7] for a discussion of some of these applications.

In this article, we will provide a more elementary proof of Breuillard’s
theorem. Our proof makes use of some of the results about products of
matrices proved by Breuillard, for example Lemma 2.3, Proposition 3.5 and
Proposition 3.6, but avoids results in diophantine geometry such as Bilu’s
equidistribution theorem [5], or results of Zhang [16] about small points
on algebraic tori, and also avoids the use of the geometry of Bruhat–Tits
buildings. The key idea in our proof relies on the existence of word maps in
compact Lie groups whose image lies close to the identity element. These
words are known as almost laws after Andreas Thom [14]; See Section 2.2.

1.1. Definitions. Let K ⊂ Q be a number field and let VK be the set
of absolute values on K up to equivalence, which are either archimedean
(corresponding to real and complex embeddings of K in R or C) or non-
archimedean (corresponding to prime ideals in the ring of integers OK of
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K). For v ∈ VK , let Kv be the corresponding completion of K and define
nv := [Kv : Qp], if v|p or nv := [Kv : R] if R ⊆ Kv. For a vector x =

(x1, x2, . . . , xd) in Kd
v , we define ‖x‖v := maxdi=1 |xi|v if v is non-archimedean

and ‖x‖v :=
√
|x1|2v + · · ·+ |xd|2v if ν is archimedean.

For a matrix A in GLd(K), let ‖A‖v be the operator norm. For a finite
set F of matrices in GLd(K), let ‖F‖v := maxA∈F ‖A‖v. The height of F is
defined as

h(F ) :=
1

[K : Q]

∑
v∈VK

nv log+ ‖F‖v,

where log+(x) = log max(|x|, 1) for a real number x. It does not depend on
K as long as F is a subset of GLd(K). The normalized height is defined by

ĥ(F ) := lim
n→∞

h(Fn)

n
,

where Fn consists of all products of n elements in F . The limit above exists

because h(Fn) is sub-additive, which also implies h(F ) ≥ ĥ(F ).
Our main result is a new proof of the following theorem due to Breuillard

[6]:

Theorem 1.1. For any positive integer d, there exists εd > 0 such that for
any symmetric finite set F ⊂ GLd(Q), either

(1) F generates a virtually solvable group, or

(2) ĥ(F ) ≥ εd.
Remark 1.2. In section 4 we give a brief discussion on the possible esti-
mates one can get of εd by using our methods and ideas of E. Breuillard and
A. Thom.

Remark 1.3. In [6], Breuillard proved this theorem without the assumption
that F is symmetric1. Moreover he showed that F can be conjugated in such
a way that their height and normalized height are comparable by a constant
only depending on d. Our proof does not establish these results. Moreover
we use the results of Eskin–Mozes–Oh [10] and some lemmas of E. Breuillard
[6] that allows us to compare the height and normalized height.

1.2. Idea of the proof of Theorem 1.1. We illustrate the idea of the
proof in a very particular case. Assume d = 2, F ⊂ SL2(Q) and assume
that all the entries of elements of F are algebraic integers. In this case, the
only contribution to the height comes from archimedean places. Let K be
the number field generated by the entries of elements in F . Let w ∈ F2 be
an almost law for SU(2) (see Section 2.2 for the definition). Suppose for
simplicity, there exist A,B ∈ F such that Tr(w(A,B)−Id) 6= 0 (see Lemma
3.1), and let

(1) Q =

k∏
i=1

(Tr(w(Ai, Bi)− Id)),

1symmetric means that if x ∈ F , then x−1 ∈ F



A HEIGHT GAP IN GLd(Q) AND ALMOST LAWS 3

where k = [K : Q], Ai = σi(A) and Bi = σi(B), and σi : K → C are the
different embeddings of K in C.

By construction, Q is a nonzero integer and therefore |Q| ≥ 1. Let δ > 0
be small enough and let S be the set of i’s such that either ‖Ai‖ or ‖Bi‖ is
greater than eδ. There are two cases: If |S| ≥ k/2, then one of the heights
h(A) or h(B) must be greater than 1

2δ and so h(F ) ≥ 1
2δ and we are done.

If S ≤ k/2 we have for i /∈ S, Ai and Bi are close to a pair of elements of
SU(2) and then for such i’s, Tr(w(Ai, Bi)− Id) is smaller than say e−10 by
choosing the almost law appropriately and δ small enough.

Therefore from |Q| ≥ 1, we obtain∣∣∣∣∣∏
i∈S

Tr(w(Ai, Bi)− Id)

∣∣∣∣∣ ≥
∣∣∣∣∣∏
i/∈S

Tr(w(Ai, Bi)− Id)

∣∣∣∣∣
−1

≥ e10k/2

and this implies that the height of w(A,B) must be bounded below by a con-

stant c > 0 independent of k. Thus h(F ) ≥ 1
|w|h(F |w|) ≥ 1

|w|h(w(A,B)) ≥
c
|w| , where |w| is the length of w.

1.3. Organization of the article. In Section 2, we recall definitions and
facts about heights, normalized heights, and almost laws. In Section 3, we
prove Theorem 1.1. In Section 4 we discuss strategies to obtain explicit
estimates about the constant εd in terms of d.

1.4. Acknowledgements. We would like to thank Emannuel Breuillard,
Michael Larsen, and Andreas Thom for helpful discussions and suggestions.
We particularly would like to thank Mikolaj Fraczyk, who noticed the con-
nection between a previous version of our results and the work of Breuillard,
and also Vladimir Finkelstein for multiple discussions. We are very grate-
ful to thank Michael Larsen for pointing out a mistake in Lemma 3.1 from
an early draft and for many discussions about Strong Approximation. HL
would like to thank Dylan Thurston for his interest and various discussions.
We would like to thank the anonymous referee for numerous helpful sugges-
tions.

2. Background

In this section, we give detailed definitions and basic properties of the
crucial notions in the statements and proofs of our results: heights and
almost laws.

2.1. Heights. For a number field K ≤ Q and an absolute value | · |v on
K, define nv = [Kv : Qp] as the degree of the completion Kv of K over
the closure Qp of Q in Kv. In the case where ν is archimedean nv = 1, 2
depending on whether ν comes from a real or complex embedding. When ν
is non-archimedean, we normalize the absolute value | · |v on Kv so that its
restriction to Qp is the standard absolute value, i.e., |p|v = 1/p. With such
normalization, we have the following product formula:
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Theorem 2.1 (Product formula). Let K be a number field and VK be the
set of equivalence classes of absolute values on K. Then, for every x ∈ K,∏

v∈VK

|x|nvv = 1.

Let k be a local field of characteristic 0. Let ‖ · ‖k be the standard norm
on kd as in the introduction. We use the same notation for the operator
norm on the space Md(k) of d-by-d matrices with entries in k. We define
below the quantities Λk(F ), Ek(F ) and Rk(F ) for a bounded set F ⊂Md(k),
which were defined in [6], but were also defined previously by other authors
(see Rota-Strang [13], or Breuillard [8] and its references for a more detailed
discussion).

Definition 2.2. Let F be a bounded subset of matrices in Md(k). We set

(1) the norm of F as

‖F‖k = sup
g∈F
‖g‖k,

(2) the minimal norm of F as

Ek(F ) = inf
x∈GLd(k)

∥∥xFx−1∥∥
k
,

(3) the maximal eigenvalue of F as

Λk(F ) = max{|λ|k, λ ∈ spec(q), q ∈ F},
and

(4) the spectral radius of F as

Rk(F ) = lim
n→∞

‖Fn‖1/nk .

For simplicity, when k = C, we drop k in the notation and denote the
above quantities using ‖ · ‖, E, Λ, and R respectively. If k is understood,
sometimes we will use the subscript v for v ∈ Vk, such as Λv, Ev and Rv,
instead of writing subscript kv.

With the above definition, we can reformulate the normalized height for
a finite set F ⊂Md(k) as follows (see [6, Section 2.2]):

ĥ(F ) =
1

[k : Q]

∑
v∈Vk

nv log+Rv(F )

We will often use two basic properties that follow directly from the defi-
nition:

(1) ĥ(Fn) = nĥ(F ), and

(2) ĥ(F ′) ≤ ĥ(F ) for any subset F ′ ⊂ F , especially when F ′ consists of

a single matrix A ∈ F , in which case we simply write ĥ(A) instead

of ĥ({A}).
We will also use Lemma 2.4 below in our estimates, which is based on the

following lemma of Breuillard.
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Lemma 2.3 ([6, Proposition 2.7]). Λk(F ) ≤ Rk(F ).

Lemma 2.4. Let | · |v be a non-archimedean place on a field K and equip
Md(K) with the operator norm ‖ ·‖v induced by the norm ‖x‖v := maxi |xi|v
on Kd. Then for any A ∈Md(K) we have

|TrA|v ≤ Rv(A)

Proof. Let L be a finite extension ofK, such that all the eigenvalues λ1, . . . , λd
of A belong to L. There is a unique completion | · |w extending | · |v. There-
fore Tr(A) = λ1 + · · · + λd and we have |Tr(A)|v ≤ maxi |λi|w = Λw(A).
By Lemma 2.3, we have that Λw(A) ≤ Rw(A) and it is easily checked that
Rv(A) = Rw(A). �

2.2. Almost laws. Given an element w in a free group Fn = 〈x1, . . . , xn〉
of rank n, there is a natural word map associated to any group G

w :
∏
n

G→ G,

defined as follows: Express w as a reduced word with alphabet {x±11 , . . . , x±1n },
and then for any (g1, . . . , gn) ∈

∏
nG, substitute each xi by gi and x−1i by

g−1i . For example, if w = [x1, x2] = x1x2x
−1
1 x−12 ∈ F2, then w(A,B) =

[A,B].

Definition 2.5. For a group G, a law is a nontrivial element w ∈ Fn such
that the image of wG is the identity element 1G. Given ε > 0 and a metric
d on G, an ε-almost law is a nontrivial element w ∈ Fn such that the image
of G lies in an ε-neighborhood of 1G.

For instance, the word w = [x1, x2] ∈ F2 is a law in a group G if and
only if G is abelian. In general, groups obeying a law have rather special
properties, for instance they contain no nonabelian free subgroups, and the
stable commutator length vanishes [9]. Our proof of Theorem 1.1 relies on
the following result due to A. Thom, which has also been attributed to E.
Lindestrauss; see [1].

Theorem 2.6 (A. Thom [14]). Let G be a compact Lie group and dG a bi-
invariant metric in G. For every ε > 0, there exists an ε-almost law wε ∈ F2

on G, that is, for all A,B ∈ G we have

dG(wε(A,B), 1G) < ε.

Remark 2.7. To calculate explicitly the constant εd in the main theorem,
one needs to compute |wε/2|.

In GLd(C), an almost law on the compact subgroup U(d) extends to a
neighborhood. Below we denote the identity matrix as Id, and let dGLd(C)(X,Y ) :=
‖X − Y ‖, where ‖A‖ is the operator norm with respect to the Hermitian
metric for any A ∈ Md(C). Note that the restriction of dGLd(C) to U(d) is
bi-invariant.
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Corollary 2.8. For every d > 0 and ε ∈ (0, 1), there exists a nontrivial
element w ∈ F2 and δ = δ(d, ε) > 0 such that for any A,B ∈ GLd(C)
satisfying ‖A‖, ‖A−1‖, ‖B‖, ‖B−1‖ < eδ we have

dGLd(C)(w(A,B), Id) < ε.

Moreover, w can be taken as any ε
2 -almost law on U(d), and δ = ε

8|w| .

Proof. Let w = wε/2 be an ε
2 -almost law as in Theorem 2.6 for U(d) with

respect to the restricted metric. Then for any A,B ∈ GLd(C), by the
singular value decomposition we have A = PAΛAQA and B = PBΛBQB
where PA, QA, PB, QB ∈ U(d) and ΛA,ΛB are positive diagonal matrices. If
‖A‖, ‖A−1‖, ‖B‖, ‖B−1‖ < eδ for some δ > 0, then all diagonal entries of
ΛA,ΛB lie in (e−δ, eδ).

Let A′ = PAQA and B′ = PBQB, which lie in U(d). Note that ‖A−A′‖ =
‖ΛA−Id‖ ≤ eδ−1 and ‖A−1−A′−1‖ = ‖Λ−1A −Id‖ ≤ eδ−1, and similarly for
B. By inserting intermediate words replacing one A±1 (resp. B±1) by A′±1

(resp. B′±1) at a time in the word wε/2(A,B), we obtain from the triangle
inequality that

‖wε/2(A,B)− wε/2(A′, B′)‖ ≤ |wε/2| · eδ(|wε/2|−1)(eδ − 1).

For δ = ε
8|wε/2|

< 1, we have eδ(|wε/2|−1) < eε/8 < 2 and eδ − 1 < 2δ = ε
4|wε/2|

.

Hence

‖wε/2(A,B)− wε/2(A′, B′)‖ ≤ |wε/2|eδ(|wε/2|−1)(eδ − 1) ≤ ε

4
· e

ε
8 ≤ ε

2
,

and

‖wε/2(A,B)− Id‖ ≤ ‖wε/2(A,B)− wε/2(A′, B′)‖+ ‖wε/2(A′, B′)− Id‖ ≤ ε

using the almost law. �

Corollary 2.9. For every d > 0 and ε ∈ (0, 1), there exists a nontrivial
element w ∈ F2 and δ = δ(d, ε) > 0 such that for any A,B ∈ GLd(C)
satisfying ‖A‖, ‖A−1‖, ‖B‖, ‖B−1‖ < eδ we have

Tr(w(A,B)− Id) < ε.

Moreover, w can be taken as any ε
2d -almost law on U(d), and δ = ε

8|w| .

Proof. This easily follows from Corollary 2.8 applied to ε/d. �

3. Proof of Theorem 1.1

We need to prove the uniform lower bound ĥ(F ) ≥ εd whenever F ⊂
GLd(Q) generates a group that is not virtually solvable.

To make use of this assumption on F , we need the following lemma, which
relies on [10, Proposition 3.2] or [6, Lemma 4.2].
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Lemma 3.1. Given any non-trivial word w ∈ F2, there is some nw (only
depending on w and d) such that for any set F ⊂ GLd(C) containing the
identity and generating a non virtually solvable group, there exists A,B ∈
Fnw with Tr(w(A,B)− Id) 6= 0.

Remark 3.2. The assumption that F contains the identity might be un-
necessary, but the results of Eskin-Mozes-Oh [10] are written using balls
instead of spheres. For our application, the set F is symmetric so we can
replace F by F 2, if necessary. The same for Lemma 3.3 below.

Proof. Let Γ be the group generated by F in GLd(C) and H be the Zariski
closure of Γ. We assumed that Γ is not virtually solvable, so H is not
virtually solvable. We first show that there exists X,Y ∈ Γ such that
Tr(w(X,Y )− Id) 6= 0.

As H is an algebraic group defined over C, we have the Levi decomposition
H = L n U , where U is the unipotent radical of H and L is a reductive
Levi subgroup of H. Furthermore, we have a semisimple algebraic group
S = [L,L] so that L can be written as an almost direct product of S and
the central torus T , i.e. L = S ·T and |S∩T | <∞. Let S0 be the connected
component of identity in S.

Assume that Tr(w(X,Y ) − Id) = 0 for all X,Y ∈ Γ. We claim that S0

is trivial. Indeed, by Borel’s theorem [4], the restriction of the word map
to S0, w : S0 × S0 → S0 is dominant, i.e. the image is Zariski dense in S0.
As R = {X ∈ H : Tr(X) = d} is a Zariski closed subset of H, the image of
the word map w and hence S0 are contained in R. It is easy to see that if
a matrix X satisfies Tr(Xm) = d for all m then X is a unipotent element.
This implies that every element in S0 is unipotent so it must be trivial as
S0 is semisimple. Therefore, H is virtually solvable, as virtually it is an
extension of the solvable group U by the abelian group T . This contradicts
our assumption. Hence there are X,Y ∈ Γ such that Tr(w(X,Y )− Id) 6= 0.

For the rest of proof, we think of GLd(C) × GLd(C) as a subgroup in
GL2d(C) diagonally. Let H ′ be the Zariski closure of Γ × Γ in GL2d(C).
Then the subset

X = {(A,B) ∈ GLd(C)×GLd(C) : Tr(w(A,B)− Id) = 0} ∩H ′ ⊂ GL2d(C)

is Zariski closed in H ′. As we saw above, X is a proper Zariski closed subset
in H ′. Using the fact that Γ×Γ is generated by F ×F , [10, Proposition 3.2]
or [6, Lemma 4.2] says that there exists nw ≥ 1 only depending on d and w
such that we have

{(A,B) ∈ Γ× Γ : A,B ∈ Fn ⊂ Γ} * X
as desired. �

Let K be a number field so that F ⊂ GLd(K). Let k = [K : Q] and let
σ1, σ2, . . . , σk be all the embeddings of K in C. Fix any ε ∈ (0, 1), choose
an ε

2 -almost law w = wε/2 on U(d) and let δ = ε
8|w| as in Corollary 2.9.

For w = w(x, y) ∈ F2 = 〈x, y〉, let w′ = w([x, y], [x−1, y]) ∈ F2. Note that
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w′ is still nontrivial since [x, y] and [x−1, y] generate a free subgroup of F2.
Denote the word length of w by |w|.

For technical reasons later, we need the following improvement of Lemma
3.1 to ensure that A,B ∈ SLd(C).

Lemma 3.3. In the above setting, there is n = nw only depending on w
and d such that for any finite set F ⊂ GLd(C) containing the identity and
generating a subgroup that is not virtually solvable, there exists A,B ∈ Fnw∩
SLd(C) with Tr(w(A,B)− Id) 6= 0.

Proof. Applying Lemma 3.1 to w′ we described above, we obtain some n′

(relying only on w and d) and A1, B1 ∈ Fn
′

such that Tr(w′(A1, B1)− Id) 6=
0. Let n = nw := 4n′, A = [A1, B1] and B = [A−11 , B1]. Then A,B ∈ Fn ∩
SLd(C), and w(A,B) = w′(A1, B1) by definition. Hence Tr(w(A,B)− Id) 6=
0. �

Throughout this section, let n = nw and A,B ∈ Fnw ∩ SLd(C) be as in
Lemma 3.3.

Consider the following quantity:

(2) Q :=
k∏
i=1

(Tr(w(Ai, Bi)− Id)),

where Ai = σi(A) and Bi = σi(B).
This is a nonzero rational number since Tr(w(A,B)− Id) 6= 0. Let

ε2 =
log 1

ε

log 2d
ε + |w|δ2

16d log 1
c

, and ε1 =
1

2

(
log

1

ε
− ε2 log

2d

ε

)
,

where δ = ε
8|w| as in Corollary 2.9 and 0 < c < 1 is the constant (only

depending on d) from Proposition 3.6 below, which can be chosen as c = 1
2d .

Note that ε2 < log 1
ε/ log 2d

ε < 1 and thus ε1 > 0. Let

(3) εd :=
ε2δ

2

32nd log 1
c

=
δ2 log 1

ε

32nd log 2d
ε log 1

c + 2n|w|δ2
,

which is at least at the order of 1
n(d2|w|2+|w|) as d→∞ by setting ε ∈ (0, 1)

independent of d. The constants ε1 and ε2 are chosen so that

εd =
ε2δ

2

32nd log 1
c

=
−ε1 + (1− ε2) log 1

ε − ε2 log 2d

n|w|
=

ε1
n|w|

,

which are the lower bounds of the normalized height in the analysis below.
We consider the two possibilities in the foltlowing two subsections.

3.1. Case 1: |Q| ≥ e−ε1k. In this case, we will use the estimate

(4) ĥ(F ) =
1

k

∑
v∈VK

nv log+Rv(F ) ≥ 1

k

k∑
i=1

log+Ri(F ),
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where Ri(F ) = R(σi(F )) and we simply ignore the non-archimedean places.
Partition the index set I := {1, 2 · · · , k} as I = IS t IM t IL, where

IS := {i : |Tr(w(Ai, Bi)− Id)| < ε}, IL := {i : |Tr(w(Ai, Bi)− Id)| > 2d},

and IM = I \ (IS t IL). Note that IS ∩ IL = ∅ since ε < 1.
We further consider two subcases depending on the size of IS .

3.1.1. Case 1a: |IS | > (1− ε2)k. In this case, we have∏
i/∈IS

|Tr(w(Ai, Bi)− Id)| =
|Q|∣∣∣∏i∈IS Tr(w(Ai, Bi)− Id)

∣∣∣ ≥ e−ε1k · ε−|IS |.
Taking log on both sides, we have∑
i/∈IS

log |Tr(w(Ai, Bi)− Id)| ≥ −ε1k + |IS | log
1

ε
≥ −ε1k + (1− ε2)k log

1

ε
.

As |Tr(w(Ai, Bi)− Id)| ≤ 2d for all i ∈ IM , it follows that∑
i∈IL

log |Tr(w(Ai, Bi)− Id)| ≥
∑
i/∈IS

log |Tr(w(Ai, Bi)− Id)| − |IM | log 2d

≥ −ε1k + (1− ε2)k log
1

ε
− |IM | log 2d.(5)

Lemma 3.4. For any X ∈ GLd(C), if |Tr(X − Id)| > d, then the spectral
radius Λ(X) ≥ 1

d |Tr(X − Id)| − 1. Moreover, if |Tr(X − Id)| > 2d, then

Λ(X) ≥ 1
2d |Tr(X − Id)|.

Proof. Let r = 1
d |Tr(X − Id)| and let λ1, · · · , λd ∈ C be the eigenvalues of

X. Then for the average λ̄ = 1
d

∑d
j=1 λj we have r = |λ̄− 1|.

It follows that some λi lies outside the open disk D of radius r around
1 ∈ C, since otherwise their average λ̄ lies in D by convexity, contradicting
r = |λ̄− 1|.

Since r > 1 by our assumption, the disk D contains the open disk B of
radius r − 1 around 0 ∈ C. Thus λi /∈ B and Λ(X) ≥ |λi| ≥ r − 1.

In the case r > 2, we further have Λ(X) ≥ r − 1 ≥ r − r
2 = r

2 . �

Applying Lemma 3.4 to the left-hand side of Equation (5) we obtain∑
i∈IL

log(2dΛ(w(Ai, Bi))) ≥ −ε1k + (1− ε2)k log
1

ε
− |IM | log 2d,

∑
i∈IL

log(Λ(w(Ai, Bi))) ≥ −ε1k + (1− ε2)k log
1

ε
− (|IM |+ |IL|) log 2d

> −ε1k + (1− ε2)k log
1

ε
− ε2k log 2d

since |IM |+ |IL| = |I| − |IS | < ε2k.
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Combining this with Equation (4) and Lemma 2.3, as w(A,B) ∈ Fn|w|,
we conclude

n|w| · ĥ(F ) = ĥ(Fn|w|) ≥ 1

k

∑
i∈IL

log(Ri(w(A,B)))

≥ 1

k

∑
i∈IL

log(Λ(w(Ai, Bi)))

≥ −ε1 + (1− ε2) log
1

ε
− ε2 log 2d

= n|w|εd.

Thus ĥ(F ) ≥ εd as desired in this situation.

3.1.2. Case 1b: |IS | ≤ (1 − ε2)k. Recall that for any i /∈ IS , we have
|Tr(w(Ai, Bi)) − Id| ≥ ε. Since trace is conjugate-invariant, we know that
|Tr(w(CAiC

−1, CBiC
−1))− Id| ≥ ε for all C ∈ GLd(C). Thus by Corollary

2.9, for any i /∈ IS and any C ∈ GLd(C), at least one of the four matrices
CA±1i C−1, CB±1i C−1 has norm no less than eδ. Thus we have E(Ti) ≥ eδ

for Ti := {A±1i , B±1i }.
In particular, this implies that for one element among {A±1, B±1}, let’s

say A, we have ‖Ai‖ ≥ eδ for 1
4ε2k different i’s and that implies the lower

bound h(Fn) ≥ h(A) ≥ 1
4ε2δ, which implies

h(F ) ≥
1
4ε2δ

n
.

As we want to obtain a bound for the normalized height and not only for
the height, we need a way to compare them. To do this we will make use of
the following two propositions, which are due to Breuillard. Recall that our
A,B lie in SLd(C).

Proposition 3.5 ([6, Proposition 2.9]). For any positive integer M and a
finite subset F ⊂ SLd(C), we have

E(FM ) ≥ E(F )

√
M
4d

Proposition 3.6 ([6, Lemma 2.1(b)]). There are uniform constants c = c(d)
and N(d) such that for any finite subset F ⊂ GLd(C) and any positive
integer M there is q ∈ [1, N(d)] with

Λ(F qM ) ≥ cqE(FM )q,

The latter proposition can be deduced from an inequality of Bochi [3,
Thereom B], which was also recently proved by Breuillard in [8] with a good
choice of c = c(d) (at the cost of increasing N(d)); See [8, Theorem 5]. The
inequality of Breuillard together with [8, Lemma 1] implies that one can
take c = 1

2d .
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These propositions imply that for every i /∈ IS , there is some q with

Λ(T qMi ) ≥ cqE(TMi )q ≥ cqE(Ti)
q
√
M
4d ≥ cqeqδ

√
M
4d .

Note that for T := {A±1, B±1}, we have T ⊂ Fn and thus T qMi ⊂
(σiF )nqM . Therefore, using the estimate above, we obtain

Ri(F )nqM = Ri(F
nqM ) = R((σiF )nqM ) ≥ R(T qMi ) ≥ Λ(T qMi ) ≥ cqeqδ

√
M
4d .

That is,

logRi(F ) ≥ 1

nM

(
log c+ δ

√
M

4d

)
.

Here log(c) < 0, so the right hand side is maximized to δ2

16nd log(1/c) when

M = (16d log2 c)/δ2. AsM is an integer, we should takeM =
⌊
(16d log2 c)/δ2

⌋
or
⌈
(16d log2 c)/δ2

⌉
. Since (16d log2 c)/δ2 is sufficiently large, in either case

we get

logRi(F ) ≥ δ2

32nd log 1
c

.

Hence by Equation (4), we have

ĥ(F ) ≥ 1

k

∑
i/∈IS

log+Ri(F ) ≥ ε2δ
2

32nd log 1
c

= εd.

3.2. Case 2: |Q| < e−ε1k. In this case, for α := Tr(w(A,B) − Id), we can
apply the product formula Theorem 2.1 so that∏

v∈V fK

|α|nvv =
1

|Q|
> eε1k,

where V f
K denotes the non-archimedean places of K.

Since | · |v is an ultrametric for all v ∈ V f
K , by Lemma 2.4 we have

|α|v ≤ max{|Tr(w(A,B))|v, |Tr(Id)|v} ≤ max{Rv(w(A,B)), 1}.

Hence for all v ∈ V f
K we have

log |α|v ≤ log+Rv(w(A,B))
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Therefore, this inequality and the product formula together imply

ĥ(F ) =
1

n|w|
ĥ(Fn|w|) ≥ 1

n|w|
ĥ(w(A,B))

≥ 1

n|w|k
∑
v∈V fK

log+Rv(w(A,B))

≥ 1

n|w|k
∑
v∈V fK

log |α|v

≥ 1

n|w|k
(ε1k)

=
ε1
n|w|

= εd.

4. Remarks about explicit estimates of the height gap εd

One can construct examples showing that the height gap εd ≤ c
d for some

c > 0 independent of d. A natural question is to determine the actual order
of εd and Breuillard has asked the following:

Question 4.1. Is εd ≥ 1
CdC

for some C > 0?

We will explain how our method might lead to obtain some explicit bounds
for this constant.

From equation (3), we have that

εd ≥
δ2 log 1

ε

32nwd log 2d
ε log 1

c + 2nw|w|δ2
,

where c is the constant appearing in Proposition 3.6 and δ = ε
8|w| . Recently

Breuillard proved that c can be taken to 1
2d by [8, Theorem 5 and Lemma

1]. Therefore by taking ε = 1/4, we see that εd is at least at the order of

1

nw(d2|w|2 + |w|)
,

where |w| is the word length of a 1
4 -almost law w on U(d) and the constant

nw comes from the escape of the hypersurface X defined by

Tr(w(X,Y )− Id) = 0

as in Lemma 3.1.
One can obtain a bound of the order of 1010

d
for |w| by considering the

almost laws described by Thom in [14]. It is nonetheless likely that a much
shorter almost law w exists. Thom and Breuillard pointed out to us the
fact that Kozma and Thom showed in [12] that for the symmetric group
Sd (which in some ways behave similarly to SU(d) when d is large), there
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exists a law of order eC log4(d) log log(d), which assuming Babai’s conjecture
could be improved to be of the order eC log(d) log log(d), which is quite close to
be polynomial.

The constant nw when computed from the generalized Bezout’s Theorem
as in [10] seems to be quite large. It was suggested by Breuillard that there
seems to be another way of estimating nw by considering an appropriate
finite quotient of the group generated by F (for example by moding out
a prime ideal of the ring where F is defined), and then showing that in
this finite quotient one can escape from the hypersurface X quickly. The
advantage is that there are various results about the diameter of simple
groups. Michael Larsen suggested the use of a strong approximation theorem
by Weisfeiler [15] to find the appropriate quotient.

To implement this idea, one must make sure the reduction of X to this
finite group of Lie type is a proper subset. The dimension of the variety X
is bounded by d|w| and so the reduction of X can be proved to be a proper
subset via the Schwartz–Zippel lemma, or via the Lang–Weil estimates, pro-
vided that the finite quotient is large enough (the prime ideal giving rise to
the finite quotient must have covolume larger than the degree of X , at least).

Assuming Babai’s conjecture about the diameter of finite groups one then
might expect that nw could be taken of the order (|d log(|w|))O(1) and using
results towards Babai conjecture this can possibly be taken to be of the

order e(|d log(|w|))
O(1)

, see [2].
A further complication arises in order to use the previous approach. Con-

sider for example, the subset of F given by

[
1 n!
0 1

]
and

[
1 0
n! 1

]
, where n is

a large positive integer. In this case one must reduce X over a prime larger
than n, and so the prime cannot be independent of F as we wanted, so one
have to deal with these cases in a different way.
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