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Abstract. The loop graph of an infinite type surface is an infinite diameter hyperbolic graph first studied in

detail by Juliette Bavard. An important open problem in the study of infinite type surfaces is to describe the

boundary of the loop graph as a space of geodesic laminations. We approach this problem by constructing
the first examples of 2-filling rays on infinite type surfaces. Such rays have strong filling properties while

failing to correspond to points on the boundary of the loop graph. As such they may be thought of as “fake

boundary points.” We give multiple constructions using both a hands-on combinatorial approach and an
approach using train tracks and automorphisms of flat surfaces. In addition, our approaches are sufficiently

robust to describe all 2-filling rays with certain other basic properties as well as to produce uncountably

many distinct mapping class group orbits.

1. Introduction

Mapping class groups of infinite type surfaces (so-called big mapping class groups) have recently become
an object of intense study, in part owing to their connections to dynamics and foliations of 3-manifolds. A
key tool for studying big mapping class groups has been the loop graphs. Introduced by Danny Calegari
on his blog [6] and first studied in detail by Juliette Bavard in [1], the loop graph L(S; p) of a surface S
with an isolated puncture p is an infinite diameter hyperbolic graph (see [1] and [4]). See below for the
definition. The graph L(S; p) is acted on by the subgroup MCG(S; p) of the mapping class group consisting
of the mapping classes stabilizing p. It is in many ways analogous to the curve graph C(S) of a finite-type
surface S. Bavard in [1] and Bavard–Walker in [4] have successfully applied the action MCG(S; p) y L(S; p)
to study the second bounded cohomology of MCG(S; p). Recently, Schaffer-Cohen has shown in [14] that
L(S; p) is an optimally strong model for the geometry of MCG(S; p) in the case that S is the plane minus a
Cantor set — the two are quasi-isometric.

An obstacle to fully harnessing the power of the action MCG(S; p) y L(S; p) has been a non-trivial amount
of mystery surrounding the Gromov boundary ∂L(S; p). In the finite-type case, the Gromov boundary ∂C(S)
may be identified with the space of ending laminations on S with the coarse Hausdorff topology ([11]). Ideally,
in the infinite-type case one would like to have an analogous description of ∂L(S; p) as a space of geodesic
laminations. In this paper we shed some light on the problem of understanding ∂L(S; p), while at the same
time pointing to even more mystery than was previously known.

Our main goal in this paper is to prove the existence of 2-filling rays on infinite type surfaces. We recall
the definition. Let S be an infinite type surface with an isolated puncture p and fix a complete hyperbolic
metric on S. A simple geodesic ray on S is a loop if it is asymptotic to p at both ends. The graph L(S; p)
has as vertices the loops on S and edges joining disjoint loops. It is a subgraph of a larger graph R(S; p),
called the completed ray-and-loop graph. We call a simple geodesic ray which is proper and asymptotic to p
at exactly one end a short ray. We call a simple geodesic ray long if it is asymptotic to p and is neither short
nor a loop. The vertex set of R(S; p) consists of all of the long rays, short rays, and loops on S with edges
joining disjoint pairs. From the definition, L(S; p) is naturally a subgraph of R(S; p). It is shown in [3] and
[4] that the graph R(S; p) consists of uncountably many components. One of these components contains
L(S; p) and is quasi-isometric to it. The other components are cliques of rays and we call the members
of these cliques high-filling. The Gromov boundary ∂L(S; p) is naturally identified with the set of cliques
of high-filling rays on S. From the definitions, a high-filling ray in particular is filling in the sense that it
intersects every short ray and loop.

We define a ray to be 2-filling if it is filling but not high-filling. Bavard–Walker showed in [4] that this is
equivalent to the following: the ray γ is 2-filling if it intersects every loop, but is disjoint from a long ray τ

1



2 LVZHOU CHEN AND ALEXANDER J. RASMUSSEN

which is in turn disjoint from a loop. Thus, 2-filling rays just slightly fail to be high-filling. Wondering if all
filling rays are high-filling, Bavard–Walker asked the following in [3]:

Question 1.1. [3, Question 2.7.7] Does there exist an example of a surface S with an isolated puncture and
a 2-filling ray on S?

We answer their question in the positive by explicitly constructing many examples of 2-filling rays on S
when S is the plane minus a Cantor set.

Theorem 1.2. There are uncountably many distinct mapping class group orbits of 2-filling rays on S.

This is in stark contrast to the finite-type case. In fact, when S is of finite type a filling geodesic ray γ
necessarily accumulates onto a minimal lamination filling a subsurface of S containing the puncture. In our
situation, the limiting laminations are in some sense filling and have many dense leaves, yet still do not have
strong enough properties to correspond to points of ∂L(S; p).

We give two different approaches to the construction of 2-filling rays. One is a hands-on combinatorial
approach (Section 5). The other uses geodesic laminations, train tracks, and flat surface automorphisms
(Sections 9 – 12). In Section 13 we show that these two different approaches actually produce the same
2-filling rays.

In Lemma 2.2 we show that 2-filling rays naturally lie in cliques of mutually disjoint rays, some of which
are 2-filling and some of which are not 2-filling. One may naturally wonder then what the structure of these
cliques may be and in particular if there is any constraint on the number of 2-filling rays and non-2-filling rays
in a given clique. We give partial answers to this question. In Section 5 we construct cliques containing any
given finite number of 2-filling rays together with exactly one non-2-filling ray. In Section 14 we construct
for each n ≥ 1 a clique — this time on a surface with 2n nonplanar ends — consisting of exactly n 2-filling
rays and exactly n non-2-filling rays.

Finally, our constructions are quite robust. In Section 6, we show that there are uncountably many
distinct mapping class group orbits of 2-filling rays on the plane minus a Cantor set. In Section 7, we show
that any finite clique of 2-filling rays disjoint from a single non-2-filling ray arises from the construction of
Section 5.

At the end of the paper we give a list of open problems that we hope might help to guide future research
into geodesic rays on infinite type surfaces and the boundary of the loop graph.

1.1. Organization of the paper. In Section 2 we introduce the basic concepts and set up notation. We
introduce two-side approachable long rays and establish fundamental results in Section 4, and then use them
to give the first construction of 2-filling rays in Section 5. We further show that 2-filling rays abound in
Section 6 and prove that the construction is sometimes unique in Section 7.

The second construction is given in Sections 8–12. Background and basic concepts of this part are given
in Section 3. This construction relies on a geodesic lamination with desired properties listed in Section 8.
We start by constructing an abstract weighted train track in Section 9 and establishing properties of the
associated foliation in Sections 10 and 11. Then in Section 12 we embed this train track in the plane minus
a Cantor set to obtain the desired geodesic lamination. A nice property of the embedding that we need is
proved in the appendix (Section 16).

In Section 13 we show the correspondence of the two constructions. In Section 14 we give an example to
show that there could be more than one non-filling ray disjoint from a 2-filling ray on a surface of infinite
genus.

Finally in Section 15 we give a list of open questions about 2-filling rays.

Acknowledgements. We thank the following people for invaluable conversations about laminations and
rays on infinite type surfaces: Danny Calegari, Yair Minsky, Rodrigo Treviño, Pat Hooper, Ethan Farber,
Kathryn Lindsey, and Anja Randecker. Special thanks to Yan Mary He and Kasra Rafi for insightful
questions and suggestions.



LAMINATIONS AND 2-FILLING RAYS ON INFINITE TYPE SURFACES 3

∞

Ω

ΩC
S1
C

H2 Ω̃
∞̃

τ̃1 τ̃2 = zτ̃1α̃ β̃

L

Figure 1. Bottom: Examples of a short ray, a loop, and a long ray in Ω; Upper right:

The conical cover and conical circle; Upper left: A fundamental domain Ω̃ of ΩC and the
geodesic L.

2. Background on rays and loops

Throughout this paper, let Ω be the plane minus a Cantor set. We often think of Ω as the sphere with
a Cantor set and another isolated point ∞ removed. Fix an orientation on Ω. We equip it with a complete
hyperbolic metric in the following way. Choose a pants decomposition of Ω and let P be the resulting set of
pants curves. If c1, c2, c3 ∈ P bound a pair of pants then we equip it with the unique complete hyperbolic
metric in which the pants curves are geodesics of length one. If c1 and c2 bound a pair of pants together
with ∞ then we equip it with the unique complete hyperbolic metric in which c1 and c2 are geodesics of
length one. The resulting pairs of pants may be glued together by any desired isometries.

We are interested in geodesic rays starting at ∞. A ray is simple if it does not self-intersect. Simple rays
fall into three classes: loops, short rays, and long rays. Here a loop is an oriented geodesic ray that starts
and ends at ∞. We assume loops to be simple unless stated otherwise. The same geodesic ray with reversed
orientation is a different loop. We use γ̄ to denote the geodesic γ with reversed orientation. A short ray is
a proper simple ray that escapes to a certain point in the Cantor set of ends. All simple rays other than
loops and short rays are non-proper, i.e. have nontrivial limit sets in Ω. We refer to these rays as long rays.
As usual, the limit set of a geodesic γ is cl(γ) \ γ, where cl(γ) denotes the closure of γ. See the lower half of
Figure 1 for examples.

It is convenient to think of a loop (respectively a short ray) topologically as an isotopy class of embedded
arcs on S2 that are disjoint from the Cantor set and ∞ in their interiors and that go from ∞ to ∞ (resp.
from ∞ to some point in the Cantor set). The mapping class group of Ω acts transitively on the set of loops
and the set of short rays. In contrast, there is a continuum of different orbits of long rays.

The conical circle S1
C , which we now define, is a space naturally parameterizing all geodesic rays starting

at ∞. The conical cover ΩC is the covering space of Ω corresponding to the Z subgroup of π1(Ω) generated
by a simple closed curve around ∞. It inherits a hyperbolic metric from that of Ω, by pullback. Its Gromov
boundary consists of a disjoint union of a point and a circle. The conical circle S1

C is this circle boundary
component of ΩC ; See the upper right of Figure 1.

In other words, if ∞̃ is the fixed point on ∂H2 of a generator z of the Z subgroup, and r̃ is a lift of any
fixed ray r to H2 that starts at ∞̃, then the region between r̃ and zr̃ is a fundamental domain of ΩC . The
corresponding segment on ∂H2 with two endpoints identified is a copy of the conical circle S1

C .
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We often think of a simple ray as a point on the conical circle. In particular we have a topology on the
set of rays, where two rays are close if they fellow travel for a long time in the beginning. In this topology,
the property of a ray having a (transverse) self-intersection is open. Thus the set of simple rays is closed on
S1
C , and is also nowhere dense [7, Lemma 3.3].

For any simple ray τ , the set of rays disjoint from τ (including itself) is a closed set Dτ on the conical
circle. For each complementary interval (α, β), there is a corresponding bi-infinite geodesic p(L) on Ω going
from the end of α to the end of β. More precisely, pick a lift ∞̃ of ∞ on ∂H2 and two consecutive lifts τ̃1, τ̃2
of τ starting at ∞̃, which bound a fundamental domain Ω̃ of ΩC on H2. Let α̃, β̃ be the unique lifts of α, β

in Ω̃ starting at ∞̃. Let L be the unique bi-infinite geodesic on Ω̃ going from the endpoint of α̃ to that of β̃;
See the upper left of Figure 1. Then p(L) is the projection of L on Ω.

Lemma 2.1. There are lifts of τ converging to L. In particular, the geodesic p(L) is simple on Ω. If neither
α nor β is a loop, then L cannot be a lift of τ , and p(L) lies in the limit set of τ .

Proof. Let Ω̃, α̃ and β̃ be as above. Let a and b be the endpoints of α̃ and β̃ respectively. Let Ωαβ be the

sector bounded by α̃ and β̃ in the fundamental domain for ΩC . Then (α, β) corresponds to the boundary
of Ωαβ . For each lift of τ contained in Ωαβ , its two ends bound an open sub-interval of (α, β). Any two
such sub-intervals are either disjoint or nested since τ is simple. The union of such open sub-intervals is the
entire (α, β). Indeed, for any γ ∈ (α, β), it has a lift γ̃ starting at ∞̃ which lies in Ωαβ . The lift γ̃ must
intersect some lift τ̃ of τ , and any such τ̃ lies in Ωαβ since τ is disjoint from α, β. The open sub-interval
corresponding to τ̃ contains γ.

Unless L itself is a lift of τ , no such open sub-interval is maximal, and there is an increasing nested
sequence of them converging to (α, β). This proves the first assertion. Thus p(L) is simple since τ is. If

neither α nor β is a loop, the endpoints of α̃, β̃ are not lifts of ∞, and thus L cannot be a lift of τ , so p(L)
lies in the limit set of τ . �

Given a ray τ , the circular order on S1
C induces a total order < on S1

C \ {τ}, where x < y if and only if
(x, y, τ) is positively oriented on S1

C . We say a sequence of rays τn converges to a given ray τ from its left
if τn eventually converges to the left side (i.e. the small side under the order <) of S1

C \ {τ}. Alternatively,
if an ant is moving on τ in the positive direction, then it will see τn converging to τ from its left-hand side.
Convergence from the right is defined similarly.

There is another space related to simple rays, namely the completed ray-and-loop graph R. It is the graph
whose vertices correspond to the simple rays and loops on Ω and whose edges join disjoint geodesics. It
is shown by Bavard–Walker [3, Theorem 2.8.1] that R has a connected component (which we call major)
containing all loops and short rays, which is δ-hyperbolic and infinite diameter. Each other component is
a clique (i.e. a complete subgraph), and such cliques correspond to points on the Gromov boundary of the
major component (and hence also to points on the Gromov boundary of the loop graph L(Ω;∞)).

Each ray outside the major component is called high-filling. Here a ray is (loop- and ray-) filling if it
intersects all loops and short rays. It is known that any filling ray γ is either high-filling or has distance at
most 2 to some loop. See [3, Lemma 2.7.6]. We say that a long ray is 2-filling if its minimal distance to the
set of loops and short rays on R is 2. In other words, a long ray is 2-filling if it intersects every loop and
short ray, but is disjoint from some long ray which is in turn disjoint from a short ray or loop.

The following lemma is the analog for 2-filling rays of the fact that any component in the ray-and-loop
graph R containing a high-filling ray is a clique.

Lemma 2.2. For any 2-filling ray γ, its star in the ray-and-loop graph R is a clique. In addition, all 2-filling
rays in the clique have the same star.

Proof. Since γ is 2-filling, any point in the star represents a long ray. Let r1, r2 be two long rays disjoint
from γ. Then r1 and r2 are disjoint by [3, Lemma 2.7.4]. If r1 is also 2-filling, then this shows that any r2
disjoint from γ is also disjoint from r1 and vice versa, thus γ and r1 have the same star. �
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Finally, we introduce a piece of notation. Let α be an oriented ray or loop and p, q ∈ α with p < q in the
orientation on α (possibly with p =∞ and/or q =∞). Then we denote by α|[p, q] the subarc of α which is
oriented from p to q. If α is a simple compact arc and p, q ∈ α then α|[p, q] similarly denotes the subarc of
α between p and q.

3. Background on train tracks, laminations, and foliations

For us, a train track will denote a locally finite graph with the following structure. At any vertex v the
set B(v) of incident edges at v is partitioned into nonempty sets Bi(v) and Bo(v) which we call incoming
and outgoing, respectively. Moreover, the sets Bi(v) and Bo(v) carry total orders <i and <o, respectively. If
T is a train track then the vertices of T will be called switches and the edges will be called branches. The
set of branches of T will be denoted by B(T ). A train path on T is a (finite or infinite) edge path on T with
the following property. Any two consecutive branches are incident to a common switch v and we require
one of the branches to be incoming and the other to be outgoing at v. As usual, we may consider T as a
topological 1-complex endowed with the structure of a smooth manifold away from the switches and at any
switch v the structure of a well-defined tangent line so that

• all of the branches incident to v are tangent,
• if all incident branches are oriented to point towards v, then the tangent vectors to the incoming

(respectively outgoing) branches all point in the same direction,
• the tangent vectors to the incoming branches and outgoing branches point in opposite directions.

A train path on T is then a smooth immersion of an interval into T .

A weight system on T is a function w : B(T )→ R≥0 with the following property. If v is a switch then we
have that the sum of the weights of the incoming branches incident to v is equal to the sum of the weights
of the outgoing branches incident to v. We will call a weighted train track a pair (T,w) where T is a train
track and w is a weight system on T .

Associated to a weighted train track (T,w) there is a union of foliated rectangles defined as follows. For
each branch b ∈ B(T ) we consider the rectangle R(b) = [0, 1]× [0, w(b)]. These rectangles are glued together
as follows. Any switch v defines an interval I(v) = [0, `] where we set

` =
∑

b∈Bi(v)

w(b) =
∑

b∈Bo(v)

w(b).

If b1 <o b2 <o . . . <o bn are the outgoing edges at v then I(v) is divided into consecutive closed subintervals
I1, . . . , In of lengths w(b1), . . . , w(bn), respectively and where 0 ∈ I1. The left vertical side {0}× [0, w(bi)] of
R(bi) is glued isometrically to the interval Ii. Similarly, the right vertical sides of the rectangles corresponding
to the incoming branches at v are glued to I(v) isometrically according to the total order <i.

Denote the union of foliated rectangles by G. Each rectangle R(b) of G is foliated by the horizontal line
segments [0, 1]× {h} for h ∈ [0, w(b)]. This endows G with the structure of a singular foliation. That is, G
is foliated by horizontal lines away from a discrete set of points (the singularities of the foliation, where at
least three rectangles meet) and its boundary ∂G which is defined to be the union of the horizontal boundary
components [0, 1]× {0} and [0, 1]× {w(b)} of the rectangles R(b). For the rest of the discussion, endow the
topological space underlying G with an orientation.

A saddle connection of G is an embedding of a compact interval into G which is a union of horizontal line
segments, having singularities at its endpoints and no singularities in its interior. A singular ray of G is an
embedding of the half-line [0,∞) into G which is a union of horizontal line segments with a singularity at
its endpoint and no singularity in its interior.

A leaf l of G is an embedding of R into G which is the union of a sequence

. . . σ−2σ−1σ0σ1σ2 . . .

of horizontal line segments of G and satisfies the following properties. First of all, each σi traverses a
rectangle Rbi in G and we require that

. . . b−2b−1b0b1b2 . . .
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is a train path on T . Secondly, there is a choice of left or right (assume left for simplicity) such that the
following condition is satisfied. Suppose that some σi has endpoints pi ∈ Rbi−1 ∩ Rbi and qi ∈ Rbi ∩ Rbi+1 .
Suppose that σi is contained in the interior of Rbi but that qi is a singularity. Then the rectangle Rbi+1

traversed by σi+1 lies to the left at qi as we traverse σi from pi to qi. If on the other hand, σi is contained
in the interior of Rbi but pi is a singularity, orienting σi from qi to pi, we have that Rbi−1

lies to the right
at pi. A half leaf of l is an equivalence class of rays contained in l, where two sub-rays are considered to be
equivalent if their symmetric difference is compact.

A leaf will be called singular if it contains a singularity and non-singular otherwise. The leaves of G
define train paths on T and we denote by T P(T,w) the resulting set of train paths. If t is the train path
defined by some singular leaf, we will call it a boundary path.

We say that a train path t ∈ T P(T,w) accumulates onto the path t′ ∈ T P(T,w) if every finite sub-
train path b1 . . . bk of t′ is contained in t. We say that t is dense in T P(T,w) if it accumulates onto every
t′ ∈ T P(T,w). There is a (typically non-Hausdorff) topology on T P(T,w) with sub-basis consisting of all
sets of the form

{t ∈ T P(T,w) : b1 · · · bk is contained in t}
where b1 · · · bk is a finite train path on T . With this topology, t accumulates onto t′ if and only if every
neighborhood of t′ contains t.

Finally, we define a flat surface to consist of the following data:

• a topological surface Σ;
• a countable closed subset P of Σ;
• an atlas of charts from open subsets U ⊂ Σ \P to C such that all transition functions between these

charts have the form z 7→ ±z + c in coordinates, where c ∈ C is a constant.

The surface Σ\P inherits a Euclidean metric. This metric is typically incomplete and we require it to extend
to P , so that P is identified with a subset of the completion of Σ\P . The points of P are called singularities
of the flat surface Σ.

The surface Σ also inherits a horizontal foliation Fh defined as follows. If U ⊂ Σ\P and φ : U → C is one
of the charts defined above, then the line segments Im(z) = y in φ(U) pull back to a family of line segments
on U . The leaves of Fh are the maximal concatenations of such line segments. Similarly, the vertical line
segments Re(z) = x in φ(U) pull back to line segments on U and the leaves of the vertical foliation Fv are
the maximal concatenations of these line segments. Since all transition functions have the form z 7→ ±z+ c,
both Fh and Fv are well-defined and are indeed foliations of Σ.

4. Two-side approachable long rays

In this section we introduce the so-called two-side approachable long rays. Given such a long ray, we will
construct 2-filling rays disjoint from it in the next section.

Definition 4.1. A long ray τ is two-side approachable if there are loops `i and ri converging to τ such that
`i converges to τ from the left, ri converges to τ from the right, and such that `i and ri are all disjoint from
τ .

Example 4.2. Figure 2 depicts a simple example of a two-side approachable long ray τ that spirals and
limits to a geodesic arc α connecting two points in the Cantor set. There are geodesics that follow τ for a
long time and then turn around to the left to form a loop disjoint from τ and slightly to the left of τ . See
the loop ` in Figure 2. Similarly there are loops disjoint from τ and sightly to the right of τ . Thus τ is
indeed two-side approachable.

See Section 6 for more complicated examples, where we construct a continuum of mapping class group
orbits of two-side approachable long rays.

Given a two-side approachable long ray τ , a priori the loops `i, ri as in the definition might intersect each
other, but one can apply surgeries to make them pairwise disjoint and have other nice properties for our
construction in the next section.
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∞
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Figure 2. A two-side approachable long ray τ with a disjoint loop ` slightly on its left
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r2
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r1
r̄1
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∞
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Figure 3. On the right we have loops `i, ri with disjoint interiors that converge to and are
disjoint from a two-side approachable long ray τ , where black dots indicate Cantor subsets.
The figure on the left depicts their lifts to H2, where τ̃1 and τ̃2 are consecutive lifts of τ .

To state these properties, let Iτ be the closed interval obtained from cutting the conical circle S1
C at τ .

Recall that the circular order on S1
C induces a total order < on Iτ , where x < y if and only if (x, y, τ) is

positively oriented. Then {`i} and {ri} represent sequences on Iτ converging to the left and right endpoints
of Iτ , respectively.

We refer to the component of Ω \ `i (resp. Ω \ ri) not containing τ as the interior of `i (resp. ri), and
refer to the other component as the exterior. We will further make `i decreasing, ri increasing, and together
satisfy

(4.1) · · · < `i < ¯̀
i < · · · < `1 < ¯̀

1 < r̄1 < r1 < · · · < r̄i < ri < · · · ,

where ¯̀
i and r̄i represent loops `i and ri with the reversed orientation respectively. Geometrically, given that

the loops `i and ri are disjoint, the order guarantees them to have mutually disjoint interiors. See Figure 3.

The surgery to promote `i and ri is based on the following lemmas. Consider two geodesics r1 and r2
intersecting transversely at a point p. Let r be a piecewise geodesic which first traverses r1 to the point p
and then traverses r2. We say that r is making a right (resp. left) turn if the positive unit vector of r2 at
p is on the right (resp. left) of r1. See the left of Figure 4 for an example of a right turn, where we further
straighten r to a geodesic.

Lemma 4.3. Let τ be a simple ray, and let r1, r2 be geodesics disjoint from τ so that r1 starts from ∞. Let
r be the straightening of a piecewise geodesic that first follows r1 to an intersection p of r1 and r2 and then
follows r2. Then r is disjoint from τ and r < r1 (resp. r > r1) on Iτ if r makes a right (resp. left) turn at
p. Moreover,

(1) if r1, r2 are simple and the initial arc of r1 up to p does not intersect r2 then r is simple;
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∞̃

τ̃1

Ω̃

r̃

τ̃2

r̃1

r̃2 p

∞̃

Ω̃

r̃

r̃1
τ̃

τ̃ ′

r̃1

r̃2

τ̃1
τ̃2

∞̃1

Figure 4. The figure on the left shows the concatenation of r1, r2 at their intersection
p by making a right turn, and r is the straightening. The figure on the right shows the
concatenation of r1, r2 at ∞ locally disjoint from τ by making a right turn, and r is the
straightening.

(2) a bi-infinite geodesic ` is disjoint from r if it is disjoint from r1 and r2;
(3) if ` /∈ {τ, r, r1} is a geodesic starting from ∞ that does not intersect r2 transversely, then r > ` on

Iτ if and only if r1 > `.

Proof. Consider a fundamental domain Ω̃ of the conical cover in the universal cover with boundary geodesics
being consecutive lifts of τ starting at the same lift ∞̃ of ∞. See the left of Figure 4. Let r̃1 be the unique

lift of r1 in Ω̃ starting at ∞̃, and let r̃2 be the unique lift of r2 intersecting r̃1 at the unique lift of p along

r̃1. Then r̃2 stays in Ω̃ since r2 is disjoint from τ . Now a lift r̃ of r is given by the third side of the geodesic
triangle with two sides on r̃1, r̃2 shown in Figure 4. Note that any infinite geodesic intersecting r̃ must
intersect one of the other two sides of the geodesic triangle. The result easily follows from this. �

For two loops r1 and r2 disjoint from a simple ray τ , there is a unique (possibly non-simple) loop r

whose homotopy class represents their product in π1(Ω̂,∞) (where Ω̂ denotes the filled-in surface Ω ∪ {∞})
such that r is disjoint from τ near ∞. An example is shown in Figure 8 where γ

(2)
2k is the straightened

concatenation α
(2)
2k ·α

(3)
2k . We say r is making a right (resp. left) turn if r2 > r̄1 (resp. r2 < r̄1) on Iτ ; see the

right side of Figure 4 for an illustration of a right turn on the universal cover. We have the following analog
of Lemma 4.3 for this kind of surgery.

Lemma 4.4. Let r1 and r2 be loops disjoint from τ , and let r be the straightening of the unique concatenation
of r1, r2 at ∞ locally disjoint from τ . Then r is (globally) disjoint from τ , and we have r < r1 (resp. r > r1)
on Iτ if r makes a right (resp. left) turn at the concatenation. Moreover,

(1) if r1, r2 are disjoint and r2, r̄1 are adjacent among the four points r1, r̄1, r2, r̄2 on Iτ , then r is simple;
(2) a bi-infinite geodesic ` is disjoint from r if it does not intersect r1 or r2 transversely and is not a

ray starting from ∞ so that ` is between r̄1 and r2 on Iτ ;
(3) if ` /∈ {τ, r, r1} is a geodesic starting from ∞ disjoint from r2, then r > ` on Iτ if and only if r1 > `.

Proof. The proof is similar to the previous one. We first visualize the lift of r in the fundamental domain Ω̃

in this setting. Let Ω̃, ∞̃ and r̃1 be as before. Then the endpoint of r̃1 is another lift ∞̃1 of∞, viewing from
which r̃1 is a lift of r̄1. Then there are two consecutive lifts τ̃ , τ̃ ′ of τ starting from ∞̃1 so that (τ̃ , r̃1, τ̃

′) has
positive circular order. See the right of Figure 4. Now there is a unique lift r̃2 of r2 starting at ∞̃1 so that
(τ̃ , r̃2, τ̃

′) has positive circular order, and it is to the left of r̃1 if and only if r2 > r̄1 on Iτ . Then a lift r̃ of r
is the third side of the ideal geodesic triangle with sides r̃1 and r̃2 as shown on the right of Figure 4, from
which the last claim easily follows. The additional assumption that r2 and r̄1 are adjacent ensures a simple
isotopy representative of the concatenation when r1, r2 are disjoint, which implies that r is simple. Finally, a
bi-infinite geodesic ` intersecting r transversely must have a lift ˜̀ entering the ideal geodesic triangle above
from the side r̃. Thus the only case where ˜̀ avoids r̃1 and r̃2 is when ∞̃1 is an end of ˜̀. In this case, with
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∞̃

τ̃

`′2
r̄′2

`′1
r̄′1

τ̃ ′

¯̀′
2

r′2

¯̀′
1r′1

τ

∞

`′2
`′1

r′1
r′2

Figure 5. Loops `′i, r
′
i with nested interiors that converge to and are disjoint from a two-

side approachable long ray τ , where dots indicate Cantor subsets

the appropriate orientation ` is a ray starting from ∞ sitting in between r̄1 and r2 on Iτ . This proves the
second claim. �

Lemma 4.5. Let τ be a two-side approachable long ray. With the notation above, we can choose the sequences
of loops `i and ri so that they are mutually disjoint and their order on Iτ satisfies (4.1).

Proof. We start with two sequences of loops Li, Ri as in the definition converging to the left and right
endpoints of Iτ respectively. Up to taking subsequences, we may assume Li, Ri to be monotone on Iτ with
L1 < R1.

We will first inductively obtain mutually disjoint loops `′i, r
′
i that converge to the two endpoints and satisfy

a different order

(4.2) · · · < `′i < r̄′i < · · · < `′1 < r̄′1 < r′1 <
¯̀′
1 < · · · < r′i <

¯̀′
i < · · · .

Geometrically this order makes the interiors of `i and ri nested. See Figure 5 for an illustration.

To this end, let r′1 be R1 with a suitable orientation so that r̄′1 < r′1. Suppose we have obtained r′i for
1 ≤ i ≤ n and `′i for 1 ≤ i ≤ n− 1 such that they are mutually disjoint and satisfy the order (4.2). Since Lj
converges to the left endpoint of Iτ , we may choose j large enough so that Lj < r̄′n.

There are two cases:

(1) If Lj intersects some of the already chosen `′i or r′i, then the first intersection p of Lj with this
collection of loops lies on r′n since the interiors are nested. Let `′n be the straightening of the

piecewise geodesic that first follows Lj up to p and then follows r̄′n. See L
(1)
j and `′n in Figure 6 for

an illustration. Applying Lemma 4.3 to ¯̀′
n and `′n, we observe that `′n is a loop disjoint from τ and

r′n such that r′n <
¯̀′
n and `′n < Lj < r̄′n.

(2) If Lj is disjoint from all the already chosen `′i or r′i, then we have either Lj < r̄′n < r′n < L̄j or
Lj < L̄j < r̄′n < r′n. In the former case, we simply let `′n = Lj . In the latter case, let `′n be the

straightening of the unique concatenation of Lj , r̄
′
n at ∞ locally disjoint from τ . See L

(2)
j and `′n in

Figure 6 for an illustration. Applying Lemma 4.4 to ¯̀′
n and `′n, we observe that `′n is a loop disjoint

from τ and r′n such that r′n <
¯̀′
n and `′n < Lj < r̄′n.

In either case, we obtain a loop `′n with the desired properties and `′n < Lj . A symmetric surgery to some
Rk for a large k gives us the next loop r′n+1 with the desired properties and r′n+1 > Rk. Hence by induction
we obtain two sequences of mutually disjoint loops `′i, r

′
i in the desired order (4.2) and they converge to the

two endpoints of Iτ respectively.

Now we modify `′i, r
′
i to get the desired `i, ri satisfying order (4.1). Let r̄n be the concatenation of r′n with

`′n locally disjoint from τ for n ≥ 1. Similarly let ¯̀
n be the concatenation of `′n with r′n+1 locally disjoint
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τ

∞

L
(1)
j

L
(2)
j

`′n

p

`′n−1

r′n

Figure 6. Two potential Lj ’s that give rise to `′n after surgery

from τ for n ≥ 1. Then by Lemma 4.4, we have ¯̀′
n > rn > r̄n > r′n and r̄′n+1 < `n < ¯̀

n < `′n for all n.
It follows that the sequences of loops `i, ri are mutually disjoint, converge to the two endpoints of Iτ , and
satisfy the desired order (4.1) on Iτ . �

Remark 4.6. It is not even necessary to insist that `k and rk are simple in the definition of a two-side
approachable ray τ . This is because there are similar surgeries that eliminate self-intersections of any `k
(resp. rk) while keeping it disjoint from τ and making it closer to τ . We give a sketch.

Suppose rk self-intersects. Let p be the first self-intersection point on rk as one starts out from∞ following
rk. This point p cuts rk into the concatenation of geodesics α, β, γ, where α (resp. γ) is the starting (resp.
ending) geodesic path of rk from ∞ to p (resp. from p to ∞) and β is the geodesic loop in between. There
are two possible modifications: the straightening of r′k = α · β · ᾱ or r′′k = α · β̄ · ᾱ. Both are disjoint from τ
and have self-intersection numbers no more than that of β and strictly less than that of rk. Moreover, one of
the two modifications makes a left turn at p and the other makes a right turn. Hence one of them is greater
than rk on Iτ . Continuing such modifications provides a (simple) loop disjoint from τ and gets even closer.

5. 2-filling rays disjoint from two-side approachable long rays

The goal of this section is to give an explicit and straightforward construction of 2-filling rays and prove
the following theorem.

Theorem 5.1. For any two-side approachable long ray τ , there is a 2-filling ray γ such that τ is the only ray
disjoint from γ. Moreover, for any n ≥ 1, there is a set γ = {γ(1), . . . , γ(n)} of n mutually disjoint 2-filling

rays such that the set of rays disjoint from any γ(i) is {τ} ∪ (γ \ {γ(i)}). Equivalently, the star of each γ(i)

on the ray-and-loop graph R is a clique with vertex set {τ} ∪ γ.

We first describe the construction of γ for each n ≥ 1. Let `m, rm be disjoint loops converging to τ as
in Lemma 4.5. Choose two increasing sequences of positive integers pk and qk such that pk+1 − pk ≥ n and
qk+1 − qk ≥ n. We repeat the following two steps, depending on the parity of j, to inductively define n

sequences of loops γ
(1)
j , · · · , γ(n)j . In the following, · denotes the concatenation near ∞ locally disjoint from

τ introduced in Section 4.

Step 1: Let α
(n−i)
2k := γ

(n−i)
2k−1 · `pk+i · γ

(n−i)
2k−1 for all 0 ≤ i ≤ n− 1, and

let α
(i)
2k−1 := γ

(i)
2k−2 · rqk+i−1 · γ

(i)
2k−2 for all 1 ≤ i ≤ n; or

let α
(i)
1 := rq1+i−1 for all 1 ≤ i ≤ n for the initial case when 2k − 1 = 1.

Step 2: Let γ
(n)
2k := α

(n)
2k and γ

(n−i)
2k := α

(n−i)
2k · γ(n−i+1)

2k for all 1 ≤ i ≤ n− 1, and

let γ
(1)
2k−1 := α

(1)
2k−1 and γ

(i)
2k−1 := α

(i)
2k−1 · γ

(i−1)
2k−1 for all 2 ≤ i ≤ n.
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`pk+2

`pk+1

`pk

τ

γ
(1)
2k−1

γ
(2)
2k−1

γ
(3)
2k−1

`pk+2

`pk+1

`pk

τ

α
(1)
2k

α
(2)
2k

α
(3)
2k

Figure 7. Constructing α
(n−i)
2k from γ

(n−i)
2k−1 when n = 3 as in Step 1.

τ

α
(1)
2k

α
(2)
2k

α
(3)
2k

τ

α
(1)
2k

α
(2)
2k

γ
(3)
2k = α

(3)
2k

γ
(1)
2k

γ
(2)
2k

Figure 8. Constructing γ
(n−i)
2k from α

(n−i)
2k when n = 3 as in Step 2.

The constructions of α
(n−i)
2k and γ

(n−i)
2k as in the two steps above are depicted in Figures 7 and 8 respec-

tively. When pk and qk are large enough for all k, we will show that γ
(1)
j , · · · , γ(n)j converge to simple rays

γ(1), · · · , γ(n) with the desired properties as j →∞.

Before we proceed to show that the construction gives us the desired 2-filling rays, we explain how this
intuitively works in the case n = 1, where we take pk = qk = k. Figure 9 shows the ray γ right before it
starts to follow `2 for the first time. One key property of γ is that when it starts to follow some `k (resp.
rk) for the first time it is in the middle slightly to the left (resp. right) of τ . Such segments get close to
the starting segments of τ and γ on both sides, and thus force any ray other than γ and τ to intersect γ
transversely.

In later sections we will give another construction of 2-filling rays using train tracks and laminations (see
Theorem 8.1). That construction is similar to the construction here with n = 1, and one can almost see a
train track in Figure 9 by collapsing parallel strands. Compare with Figure 22. See Section 13 for a detailed
discussion on the correspondence.

To prove Theorem 5.1, we first prove some properties of the loops α
(i)
k and γ

(i)
k .
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∞
τ

`1 `2

r1γ

r2

Figure 9. The 2-filling ray γ only disjoint from τ in our construction after the first few
steps.

Lemma 5.2. The sequences of loops γ
(1)
j , · · · , γ(n)j and α

(1)
j , · · · , α(n)

j constructed above have the following
properties:

(1) For any given j, the loops γ
(i)
j (resp. α

(i)
j ) as we vary i are mutually disjoint and disjoint from τ ;

(2) For any 1 ≤ i ≤ n, we have

γ
(i)
2k−1 < γ

(i)
2k ≤ α

(i)
2k < α

(i)
2k < γ

(i)
2k−2,

on Iτ for all k > 1 and similarly

γ
(i)
2k−1 < α

(i)
2k+1 < α

(i)
2k+1 ≤ γ

(i)
2k+1 < γ

(i)
2k ,

on Iτ for all k ≥ 1;

(3) For all k ≥ 1 and any 1 ≤ i ≤ n, γ
(i)
2k+1 and γ

(i)
2k (resp. γ

(i)
2k and γ

(i)
2k−1) can be made arbitrarily close

on Iτ by choosing pk (resp. qk) large enough;

(4) For all k ≥ 1 we have ¯̀
pk+n < α

(1)
2k < α

(1)
2k < α

(2)
2k < · · · < α

(n)
2k < α

(n)
2k < r̄qk+1

on Iτ , and

¯̀
pk+n < γ

(1)
2k < · · · < γ

(n)
2k < γ

(n)
2k < · · · < γ

(1)
2k < r̄qk+1

. Similarly ¯̀
pk < α

(1)
2k−1 < α

(1)
2k−1 < α

(2)
2k−1 <

· · · < α
(n)
2k−1 < α

(n)
2k−1 < r̄qk+n, and ¯̀

pk < γ
(n)
2k−1 < · · · < γ

(1)
2k−1 < γ

(1)
2k−1 < · · · < γ

(n)
2k−1 < r̄qk+n.

(5) Both α
(i)
2k−1 and γ

(i)
2k−1 are disjoint from `s and rt for all s ≥ pk and t ≥ qk + i, and similarly α

(n−i)
2k

and γ
(n−i)
2k are disjoint from `s and rt for all s ≥ pk + i+ 1 and t ≥ qk+1.

Proof. We prove bullets (1), (2), (4) and (5) together by induction on j.

For j = 1, we have α
(i)
1 := rq1+i−1 mutually disjoint and satisfying (4.1). We verify these statements

about α
(i)
1 and γ

(i)
1 . By Lemma 4.4 we see that the γ

(i)
1 ’s are mutually disjoint simple loops since the α

(i)
1 ’s

are disjoint and satisfy (4.1). The second claim in Lemma 4.4 also implies that each γ
(i)
1 is disjoint from τ ,

`s, and rt for all s ≥ p1 and t ≥ q1 + i. This verifies bullets (1) and (5). Bullet (4) follows from (4.1) and

the last claim in Lemma 4.4, where we treat each γ
(i)
1 as the concatenation γ

(i−1)
1 · α(i)

1 for i ≥ 2. Finally,

bullet (2) is vacuous for α
(i)
1 and γ

(i)
1 .

Suppose the statements about loops up to α
(i)
j and γ

(i)
j for all 1 ≤ i ≤ n and some j ≥ 1 are all correct.

We verify the results as we add α
(i)
j+1 and γ

(i)
j+1 for all 1 ≤ i ≤ n to the list. We assume j = 2k − 1 for some

k ≥ 1 in the sequel. The case where j is even can be proved similarly in a symmetric way.

By the induction hypothesis and (4.1), γ
(n−i)
2k−1 is disjoint from τ , `s and rt for s ≥ pk and t ≥ qk+1 ≥ qk+n,

and we have `pk+i <
¯̀
pk+i < γ

(n−i)
2k−1 < γ

(n−i)
2k−1 . Applying Lemma 4.4 twice to α

(n−i)
2k := γ

(n−i)
2k−1 · (`pk+i ·γ

(n−i)
2k−1 )

as the result of two concatenations, we see that α
(n−i)
2k is a loop disjoint from τ , `s and rt for all s ≥ pk+ i+1

and t ≥ qk+1 as in bullets (1) and (5). Lemma 4.4 also implies that ¯̀
pk+n < α

(n−i)
2k , α

(n−i)
2k < r̄qk+1

as in
bullet (4).
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Next we show that α
(n−i)
2k and α

(n−j)
2k are disjoint for any i < j. This can be seen by observing the

disjoint representatives in Figure 7. Alternatively, note that γ
(n−j)
2k−1 and `pk+j are disjoint from `pk+i and

γ
(n−i)
2k−1 , and that neither γ

(n−j)
2k−1 nor `pk+j sits between ¯̀

pk+i and γ
(n−i)
2k−1 . So we deduce from Lemma 4.4 that

`pk+i · γ
(n−i)
2k−1 is disjoint from γ

(n−j)
2k−1 and `pk+j , and that neither γ

(n−j)
2k−1 nor `pk+j sits between γ

(n−i)
2k−1 and

`pk+i · γ
(n−i)
2k−1 . Thus by applying Lemma 4.4 again, we see that α

(n−i)
2k is also disjoint from γ

(n−j)
2k−1 and `pk+j ,

and that `pk+j <
¯̀
pk+j < γ

(n−j)
2k−1 < γ

(n−j)
2k−1 < α

(n−i)
2k . By a similar process, we can further deduce that α

(n−i)
2k

and α
(n−j)
2k = γ

(n−j)
2k−1 · (`pk+j · γ

(n−j)
2k−1 ) are disjoint.

Now we prove γ
(n−i)
2k−1 < γ

(n−i)
2k ≤ α

(n−i)
2k < α

(n−i)
2k < γ

(n−i)
2k−2 as in bullet (2) by finding suitable lifts of

γ
(n−i)
2k , α

(n−i)
2k , and α

(n−i)
2k . The induction hypothesis already guarantees γ

(n−i)
2k−1 < γ

(n−i)
2k−2 . On a fundamental

domain Ω̃ of ΩC between two consecutive lifts of τ starting from a chosen ∞̃, we have the lifts of γ
(n−i)
2k−2 ,

γ
(n−i)
2k−1 starting at ∞̃ shown in Figure 10. Then we have lifts of `pk+i and ¯̀

pk+i starting at the endpoint

of the lift of γ
(n−i)
2k−1 . Their relative positions are correct since `pk+i <

¯̀
pk+i < γ

(n−i)
2k−1 , and they do not

intersect the lift of γ
(n−i)
2k−2 since `pk+i is disjoint from γ

(n−i)
2k−2 . Then we have lifts of γ

(n−i)
2k−1 starting at the

endpoints of the lifts of `pk+i and ¯̀
pk+i respectively. They both go to the left as shown in Figure 10 since

`pk+i <
¯̀
pk+i < γ

(n−i)
2k−1 . From this, we obtain the lifts of α

(n−i)
2k and α

(n−i)
2k starting from ∞̃. This shows

that γ
(n−i)
2k−1 < α

(n−i)
2k < α

(n−i)
2k < γ

(n−i)
2k−2 . It remains to find the lift of γ

(n−i)
2k .

For any 1 ≤ i < j ≤ n, since γ
(n−j)
2k−1 < γ

(n−i)
2k−1 and γ

(n−i)
2k−1 is disjoint from `pk+j , the above configuration

implies that α
(n−j)
2k < α

(n−i)
2k . Based on this relation, the lift of α

(n−i+1)
2k starting at the end of the lift of

α
(n−i)
2k must head to the left as shown in Figure 10. It must stay inside the half-disk bounded by the lift of

`pk+i since α
(n−i+1)
2k is disjoint from `pk+i. Continuing this process, we obtain lifts of α

(n−i+1)
2k , . . . , α

(n)
2k this

way to construct a lift of γ
(n−i)
2k starting from ∞̃, shown in Figure 10. This implies that

γ
(i)
2k−1 < γ

(i)
2k ≤ α

(i)
2k < α

(i)
2k < γ

(i)
2k−2

as in bullet (2).

Note that we also proved the inequality α
(1)
2k < α

(1)
2k < α

(2)
2k < · · · < α

(n)
2k < α

(n)
2k as in bullet (4) along the

way. The inequalities about α
(n−i)
2k ’s that we have established, together with Lemma 4.4, implies that the

γ
(n−i)
2k ’s are simple loops and satisfy the disjointness in bullets (1) and (5). The inequalities in bullet (4)

concerning γ
(n−i)
2k ’s also follow this way; also see Figure 8 for an illustration.

This completes the inductive step and proves bullets (1), (2), (4) and (5).

To see bullet (3), note that by bullet (2), γ
(n−i)
2k+1 sits in between γ

(n−i)
2k−1 and γ

(n−i)
2k . Since γ

(n−i)
2k+1 is disjoint

from τ by bullet (1), in Figure 10, the lift of γ
(n−i)
2k+1 starting from ∞̃ must have endpoint between ∞̃1 and

∞̃2, and thus between ∞̃1 and ∞̃3. As pk → ∞, the loop `pk+i converges to τ and ∞̃3 converges to ∞̃1,

thus γ
(n−i)
2k+1 and γ

(n−i)
2k can be made arbitrarily close by choosing pk large.

�

Lemma 5.3. For all k > 1 and any 1 ≤ i ≤ j ≤ n we have

α
(j)
2k < α

(j−1)
2k · α(j)

2k < · · · < α
(i)
2k · · ·α

(j)
2k < γ

(j)
2k−2

on Iτ and similarly for all k ≥ 1 we have

α
(i)
2k+1 > α

(i+1)
2k+1 · α

(i)
2k+1 > · · · > α

(j)
2k+1 · · ·α

(i)
2k+1 > γ

(i)
2k−1.
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∞̃
Ω̃

τ γ
(n−i)
2k−1

τ

¯̀
pk+i

`pk+i

τ

∞̃1

γ
(n−i)
2k

∞̃2

α
(n)
2k

· · ·

α
(n−i)
2k α

(n−i)
2k

α
(n−i+1)
2k

∞̃3

γ
(n−i)
2k−1

γ
(n−i)
2k−1

γ
(n−i)
2k−2

τ

Figure 10. Obtaining the lifts of α
(n−i)
2k , α

(n−i)
2k and γ

(n−i)
2k starting from ∞̃ in Ω̃, shown

on the upper half-plane with the point at infinity being ∞̃.

∞̃

Ω̃

τ γ
(j)
2k−1

τ

¯̀
pk+n−j

¯̀
pk+n−j+1

τ

α
(j−1)
2k · α(j)

2k

α
(j)
2k

α
(j−1)
2k

γ
(j−1)
2k−1

γ
(j)
2k−1

γ
(j−1)
2k−1

∞̃(j)

α
(j−2)
2k

· · ·
α
(i)
2k

α
(i)
2k · · ·α

(j)
2k

γ
(j)
2k−2

τ

Figure 11. Visualizing the lifts of α
(j−1)
2k · α(j)

2k and α
(i)
2k · · ·α

(j)
2k starting from ∞̃, shown on

the upper half-plane with the point at infinity being ∞̃.

Proof. Recall the construction of the lift of α
(j)
2k = γ

(j)
2k−1 · ¯̀

pk+n−j · γ
(j)
2k−1 starting from ∞̃ in Figure 10.

Denote its endpoint as ∞̃(j) in Figure 11. To obtain the lift of α
(j−1)
2k · α(j)

2k = α
(j)
2k · α

(j−1)
2k starting from

∞̃, we first visualize the lift of α
(j−1)
2k starting from ∞̃(j). Note that α

(j−1)
2k is the concatenation of γ

(j−1)
2k−1 ,

¯̀
pk+n−j+1 and γ

(j−1)
2k−1 , all of which are disjoint from γ

(j)
2k−1. Thus the lift of α

(j−1)
2k starting from ∞̃(j) is

shown as in Figure 11, which stays inside the semicircle corresponding to γ
(j)
2k−1. Here we have used that

γ
(j−1)
2k−1 < γ

(j)
2k−1 < α

(j)
2k as in Lemma 5.2.

By concatenating the lift of α
(j)
2k from ∞̃ and the lift of α

(j−1)
2k starting from ∞̃(j), we get the lift of

α
(j−1)
2k · α(j)

2k starting from ∞̃, and observe that α
(j)
2k < α

(j−1)
2k · α(j)

2k < γ
(j)
2k−2.

We can continue lifting α
(m)
2k for all j − 1 < m ≤ i. The same approach proves the first inequality in the

lemma. A symmetric argument proves the other claimed inequality. �
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Corollary 5.4. We have γ
(1)
2k−1 < γ

(i)
2k+1 ≤ γ

(1)
2k+1 < γ

(1)
2k+1 on Iτ for any 1 ≤ i ≤ n and any k ≥ 1, and

similarly γ
(n)
2k < γ

(n)
2k ≤ γ

(i)
2k < γ

(n)
2k−2 for all k > 1.

Proof. We have γ
(n)
2k < γ

(n)
2k by bullet (4) of Lemma 5.2. Since γ

(i)
2k = α

(i)
2k · · ·α

(n)
2k , the rest of the inequality

with even subscripts follows from this and the first inequality in Lemma 5.3 by taking j = n. Similarly the
inequality with odd subscripts also follows from Lemmas 5.3 and 5.2. �

Lemma 5.5. By choosing pk and qk large enough for all k, the sequence γ
(i)
k converges to a simple ray γ(i)

disjoint from τ for all 1 ≤ i ≤ n. In this case, we have

(1) γ(1) < γ(2) < · · · < γ(n);
(2) the γ(i)’s are mutually disjoint; and

(3) γ
(i)
2k−1 (resp. γ

(i)
2k ) converges to γ(1) (resp. γ(n)) as k →∞ for all 1 ≤ i ≤ n.

Proof. By bullet (2) of Lemma 5.2, for each i, the sequence γ
(i)
2k (resp. γ

(i)
2k−1) is decreasing (resp. increasing)

in k, and γ
(i)
2k−1 < γ

(i)
2k for all k. Thus the sequence {γ(i)2k } is convergent provided that γ

(i)
2k−1 and γ

(i)
2k get

close as k increases, which can be done by choosing pk and qk large; see bullet (3) of Lemma 5.2.

Given the convergence, we have γ(1) < γ(2) < · · · < γ(n) by bullet (4) of Lemma 5.2. Since γ
(i)
k and γ

(j)
k

are disjoint for any k, so are γ(i) and γ(j). Finally, since γ
(1)
2k−3 < γ

(i)
2k−1 < γ

(1)
2k−1 and γ

(n)
2k < γ

(i)
2k < γ

(n)
2k−2 by

Corollary 5.4, we see that γ
(i)
2k−1 (resp. γ

(i)
2k ) converges to γ(1) (resp. γ(n)). �

We are now in a place to prove Theorem 5.1.

Proof of Theorem 5.1. Since τ is two-side approachable, by Lemma 4.5, we obtain disjoint loops `i, ri con-

verging to τ on the two sides and satisfying (4.1). Construct n sequences of loops {γ(i)k } with 1 ≤ i ≤ n as

above and choose the constants pk, qk properly so that the sequences of loops {γ(i)k } converge to disjoint rays

γ(i) by Lemma 5.5.

Let γ = {γ(i)}ni=1. It remains to show that any ray α other than τ or those in γ intersects each γ(i).

We first show that α intersects γ(i) for any 1 ≤ i ≤ j if we have γ(j) < α < γ(j+1) for some j ≤ n−1. Recall

that γ
(i)
2k = α

(i)
2k ·γ

(i+1)
2k = · · · = (α

(i)
2k ·α

(i+1)
2k · · ·α(j)

2k )·γ(j+1)
2k . We have γ

(j)
2k ≤ α

(j)
2k < α

(i)
2k · α

(i+1)
2k · · ·α(j)

2k < γ
(j)
2k−2

by Lemma 5.3 and bullet (2) of Lemma 5.2. Thus α
(i)
2k · α

(i+1)
2k · · ·α(j)

2k converges to γ(j) as k goes to infinity.

Combining this with the fact that γ
(j+1)
2k converges to γ(j+1), we see lifts of γ

(i)
2k with the starting point and

endpoint converging to the endpoints of γ̃(j) and γ̃(j+1) respectively as k →∞, where γ̃(j) (resp. γ̃(j+1)) is
the lift of γ(j) (resp. γ(j+1)) starting from ∞̃, a chosen lift of ∞; see Figure 12.

Based on this lift of γ
(i)
2k , we obtain a lift of α

(i)
2k+1 = γ

(i)
2k · rqk+1+i−1 · γ

(i)
2k starting at the same point ∞̃1,

shown in Figure 12. Since γ
(i)
2k < r̄qk+1

≤ r̄qk+1+i−1 and rqk+1+i−1 is disjoint from γ
(j+1)
2k−1 , the endpoint of this

lift of α
(i)
2k+1 must sit in between those of γ̃

(j+1)
2k−1 and γ̃

(j+1)
2k , where γ̃

(j+1)
2k−1 (resp. γ̃

(j+1)
2k ) is the lift of γ

(j+1)
2k−1

(resp. γ
(j+1)
2k ) starting from ∞̃.

Since α
(i)
2k+1 < γ

(i)
2k+1 < γ(i) < γ

(i)
2k by bullet (2) of Lemma 5.2, the lift of γ(i) starting at ∞̃1 sits in

between the above lifts of γ
(i)
2k and α

(i)
2k+1. As k goes to infinity, this process provides lifts of γ(i) converging

to the geodesic starting from the endpoint of γ̃(j) to the endpoint of γ̃(j+1). Thus any ray γ(j) < α < γ(j+1)

intersects γ(i) for all j ≥ i.

A symmetric argument using lifts of γ
(i)
2k−1 and α

(i)
2k shows that any ray γ(j−1) < α < γ(j) intersects γ(i)

for all j ≤ i.
So it remains to show that γ(i) intersects any ray α satisfying α < γ(1) or α > γ(n) on Iτ . We will focus

on the case where α < γ(1). The other case can be proved in a symmetric way.
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∞̃

Ω̃

τ γ(j)

∞̃1

γ
(j)
2k−2

α
(i)
2k · · ·α

(j)
2k

α
(i)
2k · · ·α

(j)
2k

α
(i)
2k+1

γ(i)

γ
(i)
2k

γ
(j+1)
2k−1 γ(j+1) γ

(j+1)
2k

τ

γ
(i)
2k

rqk+1+i−1

Figure 12. Visualizing lifts of γ
(i)
2k , α

(i)
2k+1 and γ(i) starting from ∞̃1.

∞̃

Ω̃

τ `pk+n−i γ
(i)
2k−1

γ
(i)
2k−1

γ(1)

γ
(i)
2k

γ
(i)
2k−1γ

(i+1)
2k

∞̃1

τ

Figure 13. Visualizing a lift of γ
(i)
2k .

Recall that γ
(i)
2k = α

(i)
2k ·γ

(i+1)
2k = γ

(i)
2k−1·`pk+n−i·γ

(i)
2k−1·γ

(i+1)
2k . By Lemma 5.2, we have γ

(i)
2k−1 < γ

(1)
2k−1 < γ(1),

`pk+n−i <
¯̀
pk+n−i < γ

(i)
2k−1 and γ

(i)
2k−1 < γ

(i)
2k < γ

(i+1)
2k . Thus we obtain a lift of γ

(i)
2k as shown in Figure 13,

whose endpoint converges to the lift of τ on the left boundary of the fundamental domain Ω̃ as k →∞. By
Lemma 5.5, as k goes to infinity, the starting point ∞̃1 of this lift converges to the endpoint of γ̃(1), the lift

of γ(1) starting from ∞̃. Since γ(i) < γ
(i)
2k , the same convergence of endpoint holds true for the lift of γ(i)

starting from ∞̃1. This provides lifts of γ(i) that intersect any ray α satisfying α < γ(1) and completes the
proof.

�

Remark 5.6. By changing the subsurface in the interior of each `i and ri suitably, the construction gives rise
to 2-filling rays on other surfaces of infinite type.
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∞ r1
1

3
4

1
2

1
4

0

Figure 14. Loops corresponding to dyadic numbers that cut up the Cantor subset in the
interior of r1

The construction above only produces 2-filling rays that have finite valence in R, i.e. their stars in R
are finite cliques. We do not know the answer to the following question, which is seemingly related to the
analogous question for high-filling rays recently solved by Juliette Bavard [2].

Question 5.7. Is there an infinite clique of 2-filling rays in R?

The finite cliques of 2-filling rays constructed above are only disjoint from a single non-filling long ray τ .
In Section 7 we will show that in such a situation, the long ray τ must be two-side approachable, and thus
in this sense all 2-filling rays of this type come from our construction.

In general, one could also have a finite clique of 2-filling rays that are disjoint from several different
non-filling long rays. This certainly can be done on surfaces with non-planar ends. See Section 14.

As the existence of 2-filling rays makes it more complicated to check whether a ray is high-filling (and
thus contributes to a point on the Gromov boundary of the loop graph), it is natural to ask for a (relatively
simple) sufficient condition that guarantees a ray to be high-filling. Yan Mary He and Kasra Rafi asked
whether a ray is high-filling if it is filling in some stronger sense.

We believe only further requiring a filling ray to intersect all closed geodesics does not rule out the
possibility that it is 2-filling. We will explain below a modification of the construction above that gives rise
to a 2-filling ray that is filling in this strong sense.

However, the answer might become positive if we require the ray to intersect all proper geodesics (e.g.
including geodesics from a point in the Cantor set to another), as 2-filling rays might always contain proper
geodesics in their limit sets.

Question 5.8. Does the limit set of a 2-filling ray always contain a proper leaf?

In the original construction with n = 1, the 2-filling ray γ we obtain is disjoint from all closed geodesics
in the interior of each ri or `i. In general there could be other disjoint closed geodesics if the interiors of
ri, `i do not eventually “cover” the entire Cantor set. However, one can avoid this by choosing the two-side
approachable long ray τ and ri, `i appropriately.

Thus the key is to modify the construction so that γ intersects all closed geodesics in the interior of each
ri and `i. We explain the modification near r1 below. This same strategy may be applied to the other loops
ri and `i as well. To chop up the interior of r1, we repeatedly cut this disk and the Cantor subset in it
into two halves by introducing infinitely many loops, where the new segments correspond to dyadic rational
numbers; see Figure 14.

In the iterative construction of a 2-filling ray γ through γk’s (we drop the superscripts as we take n = 1),
when we follow γ̄2k to fold back and obtain γ2k+1, we modify it and let some of the segments go inside the
interior of r1 following some of the new segments corresponding to dyadic numbers, so that in the end γ
traverses all these segments corresponding to the dyadic numbers and thus intersects all closed geodesics in
the interior of r1.
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old γ3

1

`1

r2

1
2

0

new γ3

1

`1

r2

1
2

0

old γ5

1

`1

`2

r2
r3

3
4

1
2

1
4

0

new γ5

1

`1

`2

r2
r3

3
4

1
2

1
4

0

Figure 15. Comparison of γ3 and γ5 in original construction (left) and in the modified
construction (right) near r1. The portion in red represents the part obtained in the iterative
construction when the curve folds back. The dotted line in each blue box indicates that the
ray is away from r1 and near the loop labeled.

An explicit way is to do the fold-back as in the original construction except that, for the strands “carried”
by the segment corresponding to each positive dyadic number, pull the lowest strand down to traverse the
segment corresponding to the closest dyadic number with twice the denominator. Figure 15 illustrates this in
the case of γ3 and γ5. One can verify that this modification only affects the part where we fold back following
γ̄2k (the red portion in the figure). Thus it does not affect the previous γi’s. Adopting this modification to
curves near each ri and `i simultaneously, we should obtain in the limit a 2-filling ray that also intersects all
closed geodesics.

6. 2-filling rays abound

In this section we apply the construction introduced in Section 5 to different two-side approachable long
rays, and give a continuum of mapping class group orbits of 2-filling rays as well as two-side approachable
long rays.

Theorem 6.1. The set of two-side approachable long rays is invariant under the action of the mapping
class group Γ, and there is a continuum of orbits. In particular, there is a continuum of mapping class group
orbits of 2-filling rays.

Proof. To see that the set of two-side approachable long rays is invariant, suppose that ϕ ∈ Γ and that the
long ray τ is disjoint from the loops `i and ri which limit to τ on the left and right, respectively. Then ϕτ is
disjoint from the loops ϕ`i and ϕri, which limit to ϕτ on the left and right, respectively, since ϕ acts on the
conical circle S1

C by orientation-preserving homeomorphisms. It suffices to construct a continuum of orbits.
Since for each two-side approachable long ray τ there is a 2-filling ray only disjoint from τ by Theorem 5.1,
this would also give a continuum of orbits of 2-filling rays.
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∞

γ1

P1γ2 P2P3

P4

Figure 16. The closed set L, which contains the sequence of sets Pk converging to a point
in the Cantor set, and also contains bi-infinite geodesics γk with only γ1 and γ2 shown in
the figure.

We will distinguish the two-side approachable long rays we construct by their limit sets, which we now
describe. Fix an infinite increasing sequence of integers 1 ≤ n1 < n2 · · · . For each k there is some ideal
geodesic nk-gon Pk on Ω, where the interior possibly contains points in the Cantor set. We arrange {Pk} so
that

• they have disjoint interiors and distinct vertices,
• they limit to a single point in the Cantor set, and
• each vertex of Pk is accumulated by points of the Cantor set in the exterior of Pk.

See Figure 16 for an example in the case nk = k for all k.

For each k, add a bi-infinite geodesic γk spiraling and limiting to Pk and Pk+1 respectively at the two
ends. We arrange {γk} so that they are mutually disjoint and also disjoint from ∪kPk. See Figure 16.

Let L be the union of all γk and Pk. Then L is a lamination in Ω. The union of all Pk is the set of leaves
in L that are accumulated onto by other leaves. Thus for each sequence {nk}, the set of non-isolated leaves
of L combinatorially is an infinite subset of {n-gon}n≥1, and any infinite subset appears this way. Hence by
taking all possible choices of the sequence {nk}, we obtain a continuum of mutually nonequivalent geodesic
laminations L.

So it suffices to construct a two-side approachable long ray τ so that its limit set is a given lamination
L constructed above. The construction is not sensitive to the choice of {nk}, so we will assume nk = k for
simplicity.

By the property of Pk, near each end of any γk we repeatedly see points in the Cantor set to the left
(resp. right) of γk. We will use these points in our construction to turn the ray τ around to the left-hand
(resp. right-hand) side after following γk for a while.

The ray τ starts out following γ1 to spiral around P1. Then turn around to the right-hand side to follow
γ1 in the opposite direction and spiral around P2. This time turn around to the left-hand side to go back
following γ1 and spiral around P1 again for a longer time than the first time. Turn around to the right-hand
side again following γ1 and spiral around P2 for a longer time, and then turn around to the right-hand side
following γ2 to spiral around P3. The ray we obtain up to this step is shown in Figure 17.

To continue the construction in general, once the ray follows some γk to spiral around Pk+1 (e.g. P2 as
above) for the first time, we turn it around to the left-hand side to follow γk in the opposite direction and
go back all the way until we are spiraling around P1, where we spiral for a longer time than any previous
time. Then there is nothing between τ up to this point and γ1, so we can turn around to the right-hand
side and follow γ1 to spiral around P2 for a longer time than any previous time, and then follow γ2 to spiral
around P3 etc, until we follow γk+1 and spiral around Pk+2 for the first time. Now repeat the construction
to continue.
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∞

γ1

P1γ2
P2P3

P4

Figure 17. The ray τ we construct after the first few steps.

In the construction, since the ray τ spirals around each previously visited Pk along γk for a longer time
than before and γk limits to Pk, we can see that the limit set of τ is L.

Since every time we turn τ around in the construction using a set of points in the Cantor set, there are
perturbations slightly to the left and right that turn around in the same way but go back all the way to ∞.
These perturbations can be chosen to be disjoint from τ . Such loops can follow τ for any desired long time,
so they limit to τ on both sides. This shows that τ is two-side approachable. �

The proof shows that a two-side approachable ray could have various kinds of limit sets. We are curious
about the following question.

Question 6.2. Which kind of geodesic laminations can appear as the limit set of some two-side approachable
long ray? What about 2-filling rays?

We do know that the limit set of a 2-filling ray properly contains the limit set of some long ray disjoint
from it. We first prove the following lemma.

Lemma 6.3. For any filling ray γ on Ω, its limit set Λ contains the limit set of any long ray τ disjoint from
γ.

Proof. The set Dγ of (long) rays disjoint from (or coinciding with) γ is a closed subset on the conical circle,
and it contains at least two elements if τ exists. Moreover, Dγ is nowhere dense since it is a set of simple
rays (see Section 2).

Let (α, β) be any complementary interval of Dγ , where we possibly have α or β being γ. Fix a lift ∞̃ of
∞ on the universal cover, and fix two consecutive lifts γ̃1, γ̃2 of γ starting at ∞̃. Between these two lifts,
there is a unique lift α̃ (resp. β̃) of α (resp. β) starting at ∞̃. Let a, b be the endpoints of α̃, β̃ respectively.
Let L be the unique bi-infinite geodesic going from a to b. Let p(L) be its projection to Ω.

Since γ intersects all rays in (α, β), there are lifts of γ converging to L by Lemma 2.1. Thus the closure

of p(L) lies in the limit set Λ of γ, which contains the limit sets of α and β since L and α̃ (resp. β̃) start
(resp. end) at the same point on the boundary.

Now suppose τ is disjoint from γ and is not on the boundary of any complementary interval of Dγ . Remove
the closed half-disk bounded by L from the region between γ̃1 and γ̃2 for all L associated to complementary
intervals (α, β). Denote the resulting set by Ωγ , which is geodesically convex and thus contractible. Note
that the lift τ̃ of τ starting from ∞̃ lies inside Ωγ .
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Consider the limit set cl(τ) \ τ of τ as a geodesic lamination. For any point x in it, let `x be the leaf
through x. Then any lift of `x does not intersect any L associated to a complementary interval (α, β) since
τ is disjoint from γ. This implies that any lift of x lies outside Ωγ .

Now for any ε > 0, there is some y on τ and a geodesic segment s of length less than ε connecting x, y.
Let ỹ be the lift of y on τ̃ and s̃, x̃ the corresponding lifts of s and x. Then s̃ connects ỹ ∈ Ωγ and x̃ /∈ Ωγ , so
it must intersect some L associated to a complementary interval (α, β). The intersection point has distance
to x̃ less than ε. Since each p(L) lies in Λ, this shows that x ∈ Λ. As x is arbitrary, we conclude that the
limit set Λ of γ also contains the limit set of τ . �

Proposition 6.4. For any 2-filling ray γ and any long ray τ that is not filling and disjoint from γ, the limit
set Λ of γ contains the limit set of τ as a proper subset. In particular, Λ cannot be minimal.

Proof. We use the notation as in the proof of Lemma 6.3. If γ is 2-filling, then there is some long ray τ that
is not filling and disjoint from γ. For any such τ its limit set cannot contain p(L) for all complementary
intervals, where L is the geodesic constructed above associated to the complementary interval (α, β) of Dγ .
This is because otherwise the set of rays disjoint from τ is a subset of Dγ , contradicting that τ is not filling.
This shows that the limit set of τ is properly contained in Λ. This limit set is non-empty since τ is not
proper. �

7. 2-filling rays disjoint from a single non-filling ray

In this section we show the construction in Section 5 using two-side approachable long rays is in some sense
the unique way to obtain a finite clique of 2-filling rays that have a single non-filling ray disjoint from them.
In general, if a 2-filling ray is only disjoint from finitely many rays, then it is disjoint from an approachable
long ray.

Definition 7.1. A long ray τ is approachable if there is a sequence of loops `i disjoint from τ that converges
to τ .

One can apply surgeries to the sequence of loops `i in the definition to make them pairwise disjoint and
put them in a standard form analogously to Lemma 4.5.

Clearly two-side approachable long rays are approachable. We believe the two notions are not equivalent.
In Figure 18, we have two infinite sequences of Cantor subsets converging to certain points in the Cantor
set so that at each horizontal level there are two Cantor subsets, a left one and a right one. The depicted
ray τ eventually reaches each level. When τ visits each level for the first time, the left (resp. right) Cantor
set is accessible from the left (resp. right) of τ , which yields a loop slightly to the left (resp. right) of τ that
is disjoint from the previous part of τ . The ray τ is constructed to fold back later and revisit this level in a
way that blocks the access to the right Cantor set from the first visit of τ without blocking the access to the
left Cantor set. Continuing this process, we believe the ray τ obtained is approachable from its left but not
from its right.

Theorem 7.2. Let γ be a 2-filling ray that is disjoint from finitely many rays. Then γ is disjoint from
an approachable long ray. In addition, if only one ray τ disjoint from γ is not filling, then τ is two-side
approachable.

Proof. Let Dγ be the set of rays disjoint from γ including itself. By Lemma 2.2 all rays in Dγ are disjoint
from each other. Now we think of Dγ as a subset of the conical circle, equipped with the induced cyclic
order. Since Dγ is finite by our assumption, we can enumerate it in the cyclic order as τ, γ1, · · · , γn for some
n ≥ 1 so that τ is non-filling and γ1 is 2-filling.

Pick a fundamental domain Ω̃ of the conical cover ΩC on H2 bounded by two consecutive lifts τ̃1, τ̃2 of τ
starting from ∞̃, a lift of ∞ on ∂H2. Let γ̃i be the lift of γi starting from ∞̃ that sits in between τ̃1 and τ̃2.
Then (τ̃1, γ̃1, . . . , γ̃n, τ̃2) is positively oriented.

For any 0 ≤ i ≤ n, let Li be the bi-infinite geodesic on Ω̃ that travels from the endpoint of γ̃i to the
endpoint of γ̃i+1, where γ̃0 and γ̃n+1 denote τ̃1 and τ̃2 respectively. For each ray γj that is 2-filling, it is only
disjoint from rays in Dγ by Lemma 2.2. Thus there are lifts of γj converging to each Li by Lemma 2.1.
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∞

τ

Figure 18. A ray that is approachable from its left but seemingly not approachable from
its right.

...

τ̃1 ˜̀
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˜̀
k−1

˜̀
k−2

gk∞̃
gk−1∞̃ gk−2∞̃

L0

τ̃k

γ̃1

gkγ̃1

gk−1γ̃1

∞̃

gk−2γ̃1
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Ln

γ̃2 γ̃n τ̃2

Figure 19. The sequence gkγ̃1 converging to L0 with gk∞̃ converging to the endpoint of
τ̃1. Any lift of τ intersecting ˜̀

k has to be in the position of τ̃k.

Claim 7.3. There is a sequence of lifts gkγ̃1 of γ1 where gk ∈ π1(Ω), such that gkγ̃1 converges to L0 (on
compact sets) and the starting points gk∞̃ converge to the endpoint of τ̃1. See Figure 19.

Proof. Fix any p ∈ L0. There is some gk ∈ π1(Ω) and pk ∈ γ̃1 such that the unit tangent vector vk of gkγ̃1
at gkpk is arbitrarily close to either the unit tangent vector v of L0 at p or −v, as points in the unit tangent
bundle of H2. Our claim holds if it happens infinitely often that vk is close to v instead of −v. We show this
actually is the case as follows, illustrated as in Figure 20.

Suppose vk is very close to −v instead of v whenever gkpk is close to p. Then pk must be very close to
the endpoint of γ̃1, as g−1k L0 fellow travels with γ̃1 on a very large neighborhood of pk but cannot get close
to ∞̃ since the projection of L0 to Ω is simple (as a limiting geodesic of a simple ray γ1). Hence there is
some qk on L0 very close to pk for k large and the unit tangent vector uk is very close to g−1k vk. It follows
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vk gkqk

gkuk

gkrk′
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∞̃

Figure 20. Construction of a lift gkgk′ γ̃1 of γ1 that is close to L0 and going in the “same”
direction.

that gkuk is slightly to the right of vk as shown in Figure 20. It must sit in between gkγ̃1 and L0 as in the
figure since gkL0 cannot intersect any lifts of τ or γ1. Now for k′ large enough, there is some rk′ on gk′ γ̃1
so that the unit tangent vector w at rk′ is arbitrarily close to −uk. Hence the unit tangent vector gkw on
gkgk′ γ̃1 is very close to −gkuk and −vk, and thus close to v instead of −v. This contradicts our assumption
and proves the claim.

�

Now we have a sequence of geodesics ˜̀
k connecting ∞̃ to gk∞̃ and converging to τ̃1 from its left. Each ˜̀

k

projects to a (not necessarily simple) loop `k on Ω.

Claim 7.4. τ is disjoint from `k for all k sufficiently large.

This would imply that τ is approachable as we can in addition make `k simple in a way similar to Remark
4.6.

If γn is also 2-filling, which is the case if τ is the only non-filling ray in Dγ , then by a symmetric argument,
using Ln in place of L0, there is also a sequence of loops rk converging to τ from its right. In this case τ is
two-side approachable since rk and `k can be made simple by Remark 4.6, which completes the proof of the
theorem. �

Proof of Claim 7.4. Suppose that infinitely many `k intersect τ . We will exhibit lifts of τ converging to Li
for each 0 ≤ i ≤ n, from which it follows that τ is only disjoint from rays in Dγ , contradicting the fact that
τ is non-filling.

For each k such that `k intersects τ , some lift τ̃k of τ intersects ˜̀
k. Note that τ̃k is disjoint from L0 and

gkγ̃1, thus τ̃k must be a geodesic in the region between L0 and gkγ̃1 and isotopic to both. See Figure 19.
Thus letting such k go to infinity, we obtain lifts τ̃k of τ converging to L0.

Now for each 1 ≤ i ≤ n, fix a point p on Li. There are lifts hmγ̃1 of γ1 and points pm on γ̃1 such that
hmpm converges to p and the tangent lines of hmγ̃1 at hmpm become almost parallel to the tangent line of
Li at p. As we explained in the proof of Claim 7.3, the point pm must be very close to the endpoint of γ̃1
for m large. Hence there is some qm on L0 very close to pm. Combining with the fact that there is some
lift τ̃k of τ very close to L0, there is some rk on τ̃k very close to qm and pm and such that the tangent lines
of τ̃k and γ̃1 at rk and pm respectively are almost parallel. See Figure 21. Hence hmrk is very close to p
and the tangent lines of hmτ̃k and Li at hmrk and p respectively are almost parallel. This exhibits lifts of τ
converging to Li. This completes the proof. �
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... ...

τ̃1

L0

τ̃k

γ̃1

pm
qm

rk

γ̃i

p
hmpm

hmγ̃1

hmrk

hmτ̃k

Li

γ̃i+1 τ̃2

Figure 21. The sequence hmτ̃k converging to Li

In many cases when the star of a 2-filling ray γ is infinite, we can still find an approachable ray disjoint
from γ. We wonder if this is always the case.

Question 7.5. Is every 2-filling ray disjoint from some approachable long ray?

8. Geodesic laminations from train tracks

In this section we define a geodesic lamination Λ on Ω using a train track. For the statement of Theorem
8.1, recall that a geodesic ray γ spirals onto a lamination Λ if cl(γ) \ γ = Λ, where cl(γ) denotes the closure.

Theorem 8.1. There exists a geodesic lamination Λ on Ω with the following properties:

(1) Λ has three boundary leaves;
(2) the region of Ω \ Λ containing ∞ is a once-punctured ideal bigon b with ends e+ and e−;
(3) every leaf of Λ is dense except for a single proper leaf m;
(4) every half leaf of Λ is dense except for the two half leaves of m, and the two half leaves of Λ asymptotic

to e+;
(5) if τ is a ray from ∞ to e+ then τ spirals onto m;
(6) if γ is a ray from ∞ to e− then γ spirals onto Λ.

Corollary 8.2. The ray γ is 2-filling.

Proof of Corollary 8.2. Since γ spirals onto Λ, its link in R consists only of the ray τ . In particular, γ is not
disjoint from any loop or short ray. Hence, to show that γ is 2-filling, it suffices to show that τ is disjoint
from a loop. We may choose a loop α disjoint from the leaf m of Λ. Then since τ spirals onto m, it intersects
α at most finitely many times. If τ ∩ α = ∅ then we have shown that τ is disjoint from a loop and the proof
is complete. Otherwise, orient α and τ . We may choose a point p ∈ α ∩ τ such that α|[p,∞] is disjoint
from τ . Then the concatenation τ |[∞, p] ∪ α|[p,∞] is simple. It is not homotopic into a neighborhood of ∞
since τ and α are in minimal position. Moreover, it is disjoint from τ up to homotopy. This completes the
proof. �

In this section we introduce the construction of Λ via a train track. We will prove Theorem 8.1 in the
following sections. In Section 13 we show that the ray γ described in Theorem 8.1 is actually an instance of
one of the 2-filling rays constructed in Section 5.
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e1

b0

d1

b1

c2

c1

d2

b2 b3

c3

d3

c4

d4

b4b−1d0

Figure 22. The train track T with branches labeled. The track has infinitely many
branches stretching to the right in the picture.

We define an abstract train track T with branches labeled as in Figure 22. We define a weight function
w : B(T )→ [0,∞) as follows. We set w(e1) = 1

3 , w(e2) = 2
3 and

w(b−1) = w(b0) = 1, w(bn) = w(cn) =
1

2n
for n ≥ 1, w(dn) =

1

2n+1
for n ≥ 0.

We associate to the weighted train track (T,w) a corresponding union of foliated rectangles G. Namely,
for each branch b ∈ B(T ) we associate a rectangle R(b) of width 1 and height w(b), which is endowed with
its natural foliation by horizontal line segments. These rectangles are glued by isometries along their vertical
sides in a pattern determined by the train track.

Figure 23. The union of foliated rectangles G.

The foliation G determines a space of train paths T P(T,w) as described in Section 3. We note that for
each n ≥ 0 exactly two distinct points of R(dn) are identified with each other in G (whereas the natural
map R(dn)→ G is injective on the complement of these two points). We denote by Pn the resulting point.
Furthermore, for n ≥ 0, R(bn+1) and R(cn+1) are joined at a single point of G. We denote by Qn this point.
The points Pn and Qn are 3-pronged singularities of G.

9. An abstract foliation

In this section we define an abstract foliation and investigate its dynamical properties. This will be used
in later sections to define a geodesic lamination on the plane minus a Cantor set Ω. Finally, we use this
lamination to define a 2-filling ray which spirals onto it.

We consider the unit square U = [0, 1]2. It is foliated by the horizontal line segments [0, 1] × {y} for
y ∈ [0, 1]. We will define a singular foliation F by identifying certain segments of the vertical sides of U . If
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p and q are points of U which both lie on a common vertical or horizontal side of U , then we denote by [p, q]
the subsegment of that side between p and q.

We will now describe the side identifications on U . First we define a sequence of numbers yi ∈ [0, 1] as
follows. We set y−2 = 1, y−1 = 0, and

yn =
1

2
(yn−1 + yn−2) for n ≥ 0.

We also define x0 = 1
2 and

xn =
1

2
(yn−1 + yn−3) for n ≥ 1.

To define the side identifications on the right side {1}× [0, 1] of U we set p0 = (1, x0) = (1, 12 ). We identify
the segments [(1, 0), p0] and [p0, (1, 1)] by a rotation of π about the point p0.

To define the side identifications on the left side of U , we set pn = (0, xn) for n ≥ 1. Furthermore, we set
qn = (0, yn) for n ≥ −2. Note that for each n ≥ 1, pn lies midway between qn−1 and qn−3 on the left side
{0} × [0, 1] of U . We identify the segments [pn, qn−1] and [pn, qn−3] by a rotation of π about the point pn.
See Figure 24.

p1

p2

p3

p0

Figure 24. The foliation F . Dotted lines indicate side identifications by rotation by π
about the point pn. The leaf through the accumulation point r is shown in blue.

We may also write

y2n = y2n−1 +
1

22n+1
, y2n+1 = y2n −

1

22n+2

and

x2n = y2n−1 −
1

22n+1
, x2n+1 = y2n +

1

22n+2
.

From these facts we easily see that yn → 1
3 and xn → 1

3 as n→∞.

Note that,

• the sequences {pn} and {qn} both converge to the point r = (0, 13 ), and
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• q−1, q1, q3, . . . have been identified to a single point in the quotient, and
• q−2, q0, q2, . . . have also been identified to a single point.

We finally identify r with the common image of all the qi to form the topological space F , which is Hausdorff.
It is homeomorphic to a closed disk by a theorem of Moore ([12], see also [8, Section 7]). This fact may
also be seen directly. The foliation of U by horizontal lines [0, 1]× {y} projects to a singular foliation of F .
The points pn each project to 1-pronged singularities of F whereas the point r projects to an “∞-pronged”
singularity of F . We denote by π : U → F the quotient map. Thus π(pn) = pn is a 1-pronged singularity of
F and π(r) = π(q−2) = π(q−1) = π(q0) = π(q1) = . . . = r is an ∞-pronged singularity of F .

10. A flat surface and a pseudo-Anosov automorphism

In this section we introduce a flat surface Σ which is a quotient of F and a pseudo-Anosov automorphism
of it. We will use this pseudo-Anosov automorphism to prove facts about the foliation F .

The flat surface Σ is defined as follows. We consider the unit square U and points pn and qn on vertical
sides of U , defined in the previous section. As before, we identify [(1, 0), p0] and [p0, (1, 1)] by a rotation by
π and [pn, qn−1] and [pn, qn−3] also by rotations by π. The qn are also identified with the limit point r.

We also consider sequences of numbers zn and wn defined by zn = 1−xn for each n ≥ 0 and wn = 1− yn
for each n ≥ −2. We define a point a0 = (z0, 0) = ( 1

2 , 0) and identify the two segments on the bottom side
of U , [(0, 0), a0] and [a0, (1, 0)] by a rotation of π about the point a0. We identify segments of the top side
of U as follows. For n ≥ 1 we set an = (zn, 1) and for n ≥ −2 we set bn = (wn, 1). We identify the segments
[an, bn−1] and [an, bn−3] by a rotation of π about the point an. The points an and bn are simply the image
of the points pn and qn (respectively) under the reflection of U across the diagonal line from (0, 1) to (1, 0).
Finally, we identify all the bn with the limit point ( 2

3 , 1).

The surface Σ is the quotient of U under all the above identifications. It is indeed a surface and in fact
homeomorphic to a sphere (again, see [12] and [8, Section 7]). The quotient Σ inherits a flat metric away
from the singularities and vertical and horizontal foliations Fv and Fh, respectively, from the foliations of
U by vertical and horizontal line segments. There is an obvious quotient ρ : F → Σ as well. See Figure 25
for a picture of Σ.

CBA D

D

A

B

C

φ =

(
4 0

0 1
4

)

Figure 25. The surface Σ together with the pseudo-Anosov automorphism φ. Here, adja-
cent arrows which point away from each other are identified by a rotation by π.

The horizontal foliation of Σ is essentially the same as the foliation F . The only difference is that one
of the singular leaves of F (the singular leaf containing the quotient of the horizontal sides [0, 1] × {0}
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and [0, 1] × {1} of U) in the quotient Σ consists of infinitely many saddle connections joining 1-pronged
singularities to the ∞-pronged singularity.

The surface Σ admits a pseudo-Anosov automorphism φ defined as follows. Consider the four sets

A =

[
0,

1

4

]
× [0, 1], B =

[
1

4
,

1

2

]
× [0, 1], C =

[
1

2
,

3

4

]
× [0, 1], D =

[
3

4
, 1

]
× [0, 1].

These are subrectangles of U meeting along their vertical sides. Consider the following operations:

• cut U into the subrectangles A,B,C,D,

• apply the matrix

(
4 0
0 1

4

)
to each subrectangle A,B,C,D,

• apply a rotation by π to the subrectangles B and D,
• stack C on top of B on top of A on top of D.

It is shown in Figure 25 that this descends to a well-defined automorphism φ of Σ.

We remark that φ arises from the generalized pseudo-Anosov construction of de Carvalho–Hall; see [8]
(however, our automorphism φ arises from an interval endomorphism which is not unimodal).

Lemma 10.1. There is a saddle connection on F from pn to r for each n ≥ 0 (see Figure 26).

Figure 26. The horizontal saddle connections of the foliation F .

Proof. In this proof we will conflate an, bn, pn, and qn with their images under ρ ◦ π in Σ. The orbit of
singularities of Σ under iteration of φ is illustrated in Figure 27.

In particular we see that, under iteration of φ,

· · · a5 7→ a3 7→ a1 7→ p0 7→ p2 7→ p4 7→ p6 7→ · · ·

and

· · · a4 7→ a2 7→ a0 7→ p1 7→ p3 7→ p5 7→ · · · .
We also see that

· · · b2 7→ b0 7→ b−2 = q−2 7→ q0 7→ q2 7→ q4 7→ · · ·
and

· · · b1 7→ b−1 7→ q−1 7→ q1 7→ q3 7→ q5 7→ · · · .
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q−2

q−1

q0

q1

p0

p1

p2

a0

b0 b1a1 a2

p3

b−1

q2

b2

Figure 27. The orbits of singularities under φ.

The horizontal foliation of Σ clearly contains a saddle connection from p0 to q0. Since φk(p0) = p2k,
φk(q0) = q2k for all k ≥ 0 and φ preserves the horizontal foliation of Σ, we see that there is a saddle
connection from pn to qn whenever n ≥ 0 is even. There is also clearly a horizontal saddle connection from
a0 to q−1. Since φk(a0) = p2k−1 and φk(q−1) = q2k−1 for all k ≥ 1, this shows that there is a horizontal
saddle connection from pn to qn whenever n ≥ 0 is odd.

It is easy to see that each of the above described saddle connections from ρ(π(pn)) to ρ(π(qn)) is the
image of a saddle connection of F . Since r = q−2 = q−1 = q0 = q1 = · · · on F this implies that there is a
saddle connection from pn to r for each n. �

Lemma 10.2. The union of the singular leaves of F is dense in F .

Easy proof of Lemma 10.2. The saddle connection from p0 to r is the horizontal line segment π([0, 1]×{1/2}).
By an easy induction, using the description of φ via cutting and restacking, we see that the saddle connection
from pi to r is the union of the horizontal line segments π([0, 1]×{ j

2i+1 }) where j ranges over the odd integers

between 0 and 2i+1 (see Figure 26 for the first few of these saddle connections). Thus, every horizontal line
segment of F of the form π([0, 1]× {y}) where y is a dyadic rational between 0 and 1 lies on a singular leaf
of F . Since the dyadic rationals are dense in [0, 1], this proves the statement. �

We also include a less explicit, more dynamical proof of Lemma 10.2 that may be of use to readers
interested in generalizing the constructions of this paper.

Dynamical proof of Lemma 10.2. It suffices to prove the following: For an arbitrary transversal t, there
exists a singular leaf which intersects t.

For convenience, we may choose t to be a subsegment of the transversal s = {1/2} × [0, 1]. First, we
claim that there exists a nonsingular leaf l of F which intersects t at least twice. For this, we consider the
following interval exchange transformation (IET) f : [0, 1] → [0, 1]. For each n ≥ 2 f is defined by sending
the interval between yn and yn+2 by a translation to the interval between 1− yn and 1− yn+2. The IET f
may be extended in an arbitrary way to the endpoints yn and their accumulation point 1/3. See Figure 28.
The resulting map f preserves the Lebesgue measure on [0, 1]. Thus we may apply Poincaré Recurrence to
it.
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We flow the leaves of F to the right from s. Note that every nonsingular leaf of F intersects s infinitely
many times. Moreover, if the leaf through a point (1/2, x) of s is nonsingular, then the second return under
this flow of (1/2, x) to s is given by

(1/2, x) 7→ (1/2, f(x)).

We may write t = {1/2}×[a, b]. By Poincaré Recurrence, almost every point of [a, b] with respect to Lebesgue
measure returns to [a, b] infinitely many times under iteration of f . Since only countably many points of t
intersect singular leaves of F , this implies that there is a point x ∈ [a, b] such that the leaf of F through
(1/2, x) is nonsingular and x returns to [a, b] infinitely many times under iteration of f . Consequently, the
nonsingular leaf l of F through (1/2, x) returns to t infinitely many times.

y−2y−1 y0y1 y2y3

f

Figure 28. The IET f described in the proof of Lemma 10.2.

Now consider a subsegment l0 ⊂ l which intersects t at its endpoints v and w and nowhere in its interior.
Then c = t|[v, w] ∪ l0 is a simple closed curve. It bounds a disk in F containing some finite number of
1-pronged singularities and not containing the ∞-pronged singularity in its interior. The winding number
of the foliation about c is 1/2, 1, or 3/2. By the Poincaré–Hopf Index Theorem, this is equal to half the
number of 1-pronged singularities inside the disk bounded by c. In particular, this disk contains at least
one 1-pronged singularity pn. Since this disk does not contain r, the saddle connection from pn to r must
intersect c. Since this saddle connection does not intersect l, it must intersect t|[v, w]. This completes the
proof. �

Recall that a transverse measure to F assigns to each arc s transverse to the foliation a finite Borel
measure µ|s. It is required to be invariant under leaf-preserving isotopies. See for instance [9] for more
information.

Lemma 10.3. Let µ be a transverse measure to the horizontal foliation of Σ. Then either µ has an atom
along a horizontal saddle connection of Σ or µ is a multiple of Lebesgue measure.

Proof. The sets A,B,C,D form a Markov partition for the automorphism φ. Using the fact that φ admits
a finite Markov partition, a proof identical to that of [10, Theorem 12.1] shows that if µ is a transverse
measure to Fh and µ has no atoms, then µ is a multiple of Lebesgue measure.

It remains to show that if µ is a transverse measure to Fh and µ has an atom then it has an atom along a
singular leaf. It is easy to see that if µ has an atom then µ|s has an atom where s is the vertical transversal
π({1/2}× [0, 1]). If π(1/2, x) is such an atom of µ|s and π(1/2, x) lies on a nonsingular leaf l of Fh then µ|s
is infinite since l intersects s infinitely many times. This is a contradiction. �

11. Train path properties

Recall that G is the union of foliated rectangles constructed from the weighted train track (T,w). In this
section we investigate properties of the train paths T P(T,w). There is a Lipschitz quotient map Π : G→ F ,
sending leaves of G to leaves of F , defined as follows:

• the leaves of the rectangles R(bn), R(cn), and R(dn) are collapsed to points for each n ≥ 1,
• the rectangles R(b−1), R(b0), R(e1), and R(e2) are shrunk horizontally to a width of 1

3 ,
• the upper horizontal side of R(e1) is identified isometrically with the lower horizontal side of R(e2).
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We see immediately that Π(Pn) = pn and Π(Qn) = r for each n ≥ 0.

By Lemma 10.1 and its proof we immediately obtain:

Corollary 11.1. For each n ≥ 0 there is a saddle connection in G from Pn to Qn.

By Lemma 10.2 we immediately obtain:

Corollary 11.2. Saddle connections are dense in G.

Finally, the following is clear by inspection:

Lemma 11.3. There is a saddle connection from Q1 to Q0. Moreover, for each n ≥ 2 there is a saddle
connection from Qn to Qn−2. Finally, there is a saddle connection from Pn to itself for each n ≥ 0.

Lemma 11.4. The system of train paths T P(T,w) contains three boundary paths.

Proof. Refer to Figures 22 and 23 for the proof. The upper horizontal side of R(e1) and the lower horizontal
side of R(e2) form a bigon and give rise to two boundary paths in T P(T,w).

Since there is a loop based at P0 there is a single boundary train path of T P(T,w) corresponding to the
monogon with vertex at P0. This train path corresponds to a leaf l0 in G which decomposes as ll ∗ lb ∗ lr
where lb is the loop based at P0. The path ll has the form

. . .→ P5 → Q5 → Q3 → P3 → P3 → Q3 → Q1 → P1 → P1 → Q1 → Q0 → P0

where each arrow → denotes a saddle connection. Similarly, lr has the form

P0 → Q0 → Q2 → P2 → P2 → Q2 → Q4 → P4 → P4 → Q4 → Q6 → P6 → . . . .

Thus l0 visits each singularity Pn and Qn exactly twice.

For each singularity Pn or Qn, there are at most two boundary paths corresponding to leaves in G which
pass through that singularity. Moreover, there is exactly one if there is a boundary path corresponding to
a path in G which passes through that singularity twice. Since l0 passes through each singularity Pn and
Qn exactly twice, the train path corresponding to it is the only boundary path besides the two already
mentioned. �

We continue to denote by l0 the leaf in G which passes through all the singularities Pn and Qn. We
denote by l+ and l− the leaves corresponding to the sides of the bigon of G. Denote by L0, L

+, and L− the
corresponding train paths in T P(T,w), respectively.

Lemma 11.5. The path l0 is dense in G.

Proof. This is clear since saddle connections are dense in G and l0 traverses each saddle connection. �

Lemma 11.6. Every half train path of T P(T,w) is dense except for a half train path of L+ and a half train
path of L−. For these half train paths, they simply traverse the branches b0, b1, b2, . . . in order.

Proof. If l is either:

• one of the boundary leaves l+ or l− or
• a nonsingular leaf of G,

then Π(l) is a non-singular leaf of the foliation F . We consider the vertical transversal s = π({ 12}× [0, 1]) to
F . The leaf Π(l) contains a ray which intersects s infinitely many times. We consider the subsequent points
of intersection v1, v2, v3, . . . and the sequence of counting measures

µn =
1

n

n∑
i=1

δvi

on s, where δv is the Dirac unit mass at the point v. Up to taking a subsequence, the sequence µn converges
to a measure µ on s. We see that if two subsegments u1 and u2 of s are isotopic via a leaf-preserving isotopy
then µ(u1) = µ(u2). Thus, by translating arbitrary transversals to s via leaf-preserving isotopies, we see



32 LVZHOU CHEN AND ALEXANDER J. RASMUSSEN

that µ induces a transverse measure to F . Furthermore, by taking the quotient ρ : F → Σ, we see that µ
induces a transverse measure ρ∗µ to the horizontal foliation of Σ.

There are two possibilities by Lemma 10.3. If ρ∗µ has no atoms along a horizontal saddle connection
of Σ then it is a multiple of Lebesgue measure. Hence µ itself is a multiple of Lebesgue measure along s.
This proves that l ∩ s is a dense subset and therefore l is dense in G. Otherwise, ρ∗µ has an atom along a
horizontal saddle connection of Σ. We see immediately that l accumulates onto a saddle connection of G.
Thus in particular l accumulates onto the leaf l0. But the leaf l0 is dense in G and therefore l itself is dense.

Now, if l is not l+, l− or l0, then we could define the hitting measure µ by using either half leaf of l. This
implies that both half leaves of l are dense. In case l is l+ or l− then we see that one half leaf of l is dense.
The other half leaf corresponds to a train path that simply traverses the branches b0, b1, b2, . . ..

Finally, we already know that l0 is dense. It remains to be shown that each half leaf of l0 is dense. To see
this, note that any half leaf of l0 traverses a saddle connection Pn → Qn for n arbitrarily large. This shows
that this half leaf accumulates onto either l+ or l− and therefore this half leaf is also dense. �

12. Lamination properties

Recall that Ω is the plane minus a Cantor set. We embed the train track T on Ω as shown on the left of
Figure 29. The blue curves in the middle of Figure 29 are chosen to lie in the pants decomposition P from
Section 2. In particular, there are sequences of these curves, . . . C−2, C−1, C0, C1, . . . such that:

• for each i, Ci separates from Ci−1 and Ci+1,
• for each i /∈ {−1, 0}, Ci−1 and Ci+1 are separated by no other element of P,
• C−1 and C0 bound a four-holed sphere together with ∞ and one other element of P.

Collapsing parallel branches of T yields a locally finite train track T ∗ as shown in the middle of Figure
29. There is also a carrying map ζ which assigns to each branch of T a finite train path of T ∗.

We label the branches of T ∗ as shown on the right of Figure 29. Thus we see that

ζ(en) = e∗n, ζ(dn) = d∗n.

We also have
ζ(c1) = c∗1, ζ(cn) = c∗n for n even, and ζ(cn) = f∗−n+1c

∗
n for n ≥ 3 odd.

Finally, we have

ζ(b−1) = b∗−1, ζ(b0) = b∗0, ζ(b1) = b∗1f
∗
0 , ζ(b2) = f∗1h

∗
1f
∗
1 f
∗
0 f
∗
−1, ζ(b3) = h∗2f

∗
−1f

∗
0 f
∗
1 f
∗
2 , . . . .

In general,
ζ(bn) = f∗n−1h

∗
n−1f

∗
n−1f

∗
n−2 . . . f

∗
0 f
∗
−1 . . . f

∗
−n+1

for n 6= 0 even and
ζ(bn) = h∗n−1f

∗
−n+2f

∗
−n+3 . . . f

∗
0 f
∗
1 . . . f

∗
n−1

for n 6= −1, 1 odd.

The weights w on B(T ) induce a system of weights w∗ on B(T ∗) via

w∗(b∗) =
∑

b∈B(T )

(# of occurrences of b∗ in ζ(b)) · w(b).

Thus we have

w∗(e∗1) = w(e1) =
1

3
, w∗(e∗2) = w(e2) =

2

3
,

w∗(b∗−1) = w(b−1) = 1, w∗(b∗0) = w(b0) = 1, w∗(b∗1) = w(b1) =
1

2
and

w∗(c∗n) = w(cn) =
1

2n
, w∗(d∗n) = w(dn) =

1

2n+1
.

Finally we have

w∗(f∗0 ) = 1, w∗(f∗1 ) =
3

4
, w∗(f∗2 ) =

1

4
, w∗(f∗3 ) =

3

16
, w∗(f∗4 ) =

1

16
, w∗(f∗5 ) =

3

64
, . . .
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Figure 29. Left: the train track T embedded in the surface Ω. Here each boundary
component bounds a disk minus a Cantor set in Ω. Middle: collapsing parallel branches
yields a (locally finite) track T ∗. Right: we name the branches of T ∗ with the labels shown.

and

w∗(f∗−n) =
1

2n
, w∗(h∗n) =

1

2n+1

for each n ≥ 1. Denote by G∗ the union of foliated rectangles defined by (T ∗, w∗).
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Now we will describe a continuous injection ξ : T P(T,w) → T P(T ∗, w∗). For this purpose, consider
the preimages of the switches of T ∗ under ζ. The preimages induce a partition of each rectangle R(b) =
[0, 1]× [0, w(b)] into #ζ(b) vertical subrectangles of equal width 1/#ζ(b). Each switch preimage is either a
switch of T or lies in the interior of a branch of T . For convenience, we will consider each preimage as a
(possibly new, valence two) switch of T . These switches partition T into a set of branches, each of which is
mapped homeomorphically by ζ to a branch of T ∗. Thus we may consider ζ as a surjection B(T )→ B(T ∗).
Moreover, each new branch of T corresponds to one of the rectangles in the partition of the old rectangles
described before. By abuse of notation, we will denote by G the union of foliated rectangles corresponding
to (T,w) considered as a train track with the new switches. It is obtained from the old G by rescaling
rectangles horizontally.

For a branch b∗ ∈ B(T ∗), its preimage ζ−1(b∗) is a possibly infinite subset of B(T ) and

w∗(b∗) =
∑

b∈ζ−1(b∗)

w(b).

Moreover, ζ−1(b∗) inherits a total order <b∗ where we order parallel branches on the left of Figure 29 from
left to right. For a branch b∗ ∈ B(T ∗), the rectangle R(b∗) = [0, 1] × [0, w∗(b∗)] is divided into horizontal
subrectangles as follows. For a branch b ∈ ζ−1(b∗), we consider the horizontal subrectangle

R∗(b) = [0, 1]×

 ∑
b′∈ζ−1(b∗)
b′<b∗b

w(b′),

 ∑
b′∈ζ−1(b∗)
b′<b∗b

w(b′)

+ w(b)


of height w(b). The map χ : G→ G∗ is defined by sending R(b) = [0, 1]× [0, w(b)] isometrically to R∗(b) in
the natural way.

The injection ξ : T P(T,w)→ T P(T ∗, w∗) is defined by replacing each branch b in the train path t with
the branch ζ(b). That the image ξ(t) actually lies in T P(T ∗, w∗) follows from the fact that χ is a map
sending leaves to leaves.

Lemma 12.1. The image of ξ consists of all of T P(T ∗, w∗) except for a single path which has the form

t0 = . . . f∗−2f
∗
−1f

∗
0 f
∗
1 f
∗
2 . . . .

Proof. Except for the rectangles R(f∗i ), every rectangle of G∗ is the homeomorphic image under χ of a single
subrectangle from the foliation G.

On the other hand, each rectangle R(f∗i ) contains the homeomorphic images of infinitely many subrectan-
gles from G∗. These images are concatenated into two stacks. Identifying R(f∗i ) with [0, 1]× [0, w∗(f∗i )], one
stack consists of rectangles whose heights decrease with increasing y-coordinate. The other stack consists of
rectangles whose heights increase with increasing y-coordinate. See Figure 30.

Since w∗(f∗i ) is the sum of the heights of the rectangles in these two stacks, we see that the images of
these rectangles consist of all of R(f∗i ) except for a single horizontal leaf segment which we call li. Consider
the intersection of li with the vertical boundary component of R(f∗i ) which meets R(f∗i+1). We claim that
li meets this boundary component in an endpoint of li+1. For otherwise, li meets this vertical boundary
component in a point which lies in the image of a subrectangle of G. Therefore li itself is in the image of a
subrectangle of G. This is a contradiction. Thus,

. . . l−1l0l1 . . .

is a (nonsingular) leaf of G∗ and

. . . f∗−1f
∗
0 f
∗
1 . . .

is an element of T P(T ∗, w∗). It is not in the image of ξ because it does not pass through some of the
branches of T ∗, whereas every train path in the image of ξ passes through every branch of T ∗.

On the other hand, every other train path in T P(T ∗, w∗) is represented by a leaf of G∗ possibly passing
through singularities, which intersects the image of χ. It is therefore the image of a leaf of G. Therefore the
train path is the image under ξ of a train path in T P(T,w).
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···

Figure 30. Each subrectangle R(f∗i ) consists of infinitely many subrectangles of G stacked
together, limiting to a single non-singular leaf of the foliation G∗ (shown here in green).

�

Corollary 12.2. The space T P(T ∗, w∗) has the following properties:

(1) every path of T P(T ∗, w∗) is dense except for the train path t0 from Lemma 12.1,
(2) T P(T ∗, w∗) contains exactly three boundary paths.

Proof. For (1), we note that since ξ : T P(T,w) → T P(T ∗, w∗) is continuous and every train path in
T P(T,w) is dense, every element of T P(T ∗, w∗) \ {t0} accumulates onto every other element. We must
show that every element of T P(T ∗, w∗) also accumulates onto t0. Since ξ : T P(T,w)→ T P(T ∗, w∗) \ {t0}
is surjective, we may write such a train path as ξ(t) where t ∈ T P(T,w). Since t is dense, it contains the
branch bn for each n. Thus, f∗−mf

∗
−m+1 . . . f

∗
m−1f

∗
m is a subpath of ξ(t) for arbitrarily large m. Thus ξ(t)

accumulates onto t0.

Of course, t0 itself is not dense.

Since ζ : T → T ∗ is a local homeomorphism, a non-boundary path in T P(T,w) is sent by ξ to a non-
boundary path in T P(T ∗, w∗). On the other hand, it is easy to see that ξ sends the paths on the boundary
of the complementary bigon to G to paths on the boundary of the complementary bigon to G∗. Finally,
T P(T ∗, w∗) clearly contains at least one more boundary path corresponding to the remaining singular leaves
of G∗. Since ξ sends non-boundary paths to non-boundary paths, this boundary path in T P(T ∗, w∗) must
be the image of the third boundary path of T P(T,w). This proves (2). �

We define a union of geodesics on Ω as follows. Recall that each element of P, and in particular every
blue curve in Figure 29, has length one. We lift the embedded train track T ∗ to the universal cover Ω̃, which
is isometric to the hyperbolic plane when given the pullback metric induced by the cover Ω̃→ Ω. In Section
16, we verify the following lemma:

Lemma 12.3. Let t̃ be a lift of a train path t ∈ T P(T ∗, w∗) to Ω̃. Then t̃ has well-defined (distinct)

endpoints on ∂Ω̃.
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Letting t̃+ and t̃− be the endpoints of t̃ on ∂Ω̃, there is a unique geodesic [t̃+, t̃−] in Ω̃ from one endpoint

to the other. We define Λ̃ to be the union of all such geodesics [t̃+, t̃−], where t ranges over train paths in

T P(T ∗, w∗) and t̃ ranges over the lifts of t. We define Λ to be the image of Λ̃ in Ω.

Lemma 12.4. The sets Λ̃ and Λ are closed. Hence, they are geodesic laminations in Ω̃ and Ω, respectively.

The proof of Lemma 12.4 follows from Lemma 12.3 and the fact that the embedding of T ∗ on Ω is locally
finite. The proof is essentially the same as the one given in [5, Section 1.8] “Geodesic laminations weakly
carried by train tracks.” Therefore we omit it. Furthermore, a leaf l of Λ defined by the train path t
accumulates onto the leaf l′ of Λ defined by the train path t′ if and only if t accumulates onto t′ in the sense
of Section 3. We refer the reader again to [5, Section 1.8].

Theorem 8.1 is now a quick corollary. Recall the statement:

Theorem 8.1. There exists a geodesic lamination Λ on Ω with the following properties:

(1) Λ has three boundary leaves;
(2) the region of Ω \ Λ containing ∞ is a once-punctured ideal bigon b with ends e+ and e−;
(3) every leaf of Λ is dense except for a single proper leaf m;
(4) every half leaf of Λ is dense except for the two half leaves of m, and the two half leaves of Λ asymptotic

to e+;
(5) if τ is a ray from ∞ to e+ then τ spirals onto m;
(6) if γ is a ray from ∞ to e− then γ spirals onto Λ.

Proof of Theorem 8.1. The leaf m of Λ corresponds to the train path t0 described in Lemma 12.1 and is
clearly not dense. Since the leaf space of Λ is identical to T P(T ∗, w∗), Points (1), (2), and (3) follow from
Corollary 12.2.

The fact that all but four half leaves are dense in Λ follows from Lemma 11.6. Clearly neither half leaf
of m is dense. On the other hand, consider the two leaves of Λ bounding the bigon with ends e+ and e−.
The two leaves are both asymptotic to e+ on one end and to e− on the other end. We define e+ to be the
end such that either half leaf on the boundary of the bigon asymptotic to e+ corresponds to a train path
ζ(b0)ζ(b1)ζ(b2) . . .. Such a train path contains subtrain paths

f∗nf
∗
n−1 . . . f

∗
0 . . . f

∗
−n+1f

∗
−n

for n arbitrarily large, proving that the corresponding leaf accumulates onto m. However, the train path
doesn’t accumulate onto any other train path, since every other train path traverses every single branch of
T ∗ whereas the train path ζ(b0)ζ(b1)ζ(b2) . . . traverses only branches f∗i and h∗i . This proves both (4) and
(5).

On the other hand, the two half leaves of Λ asymptotic to e− are dense, again by Lemma 11.6. This
proves (6). �

13. Correspondence of the constructions

In this section we prove that the 2-filling ray γ constructed in Section 8 in fact has the form of one of the
2-filling rays constructed in Section 5. In particular, the lamination Λ is the ω-limit set of one of the 2-filling
rays constructed in Section 5. For this purpose, we explicitly demonstrate that the ray τ of Theorem 8.1 is
two-side approachable.

Consider the embedding of T in the plane minus a Cantor set Ω. Define a sequence of loops ri in Ω
approaching τ from the right as follows. The loop r1 is homotopic to the (non-simple) path given by traveling
within the bigon containing ∞ to the branch b−1 of T , traversing the branch d0 clockwise, traversing b−1
backwards to the bigon containing ∞, and then returning to ∞ within the bigon. Similarly, for i > 1, ri is
homotopic to the path which

• travels from ∞ to the branch b0, staying within the bigon of T containing ∞,
• traverses the branches b0, b1, . . . , b2i−3, c2i−2,
• traverses the branch d2i−2 in the clockwise direction,
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• traverses the branches c2i−2, b2i−3, . . . , b1, b0 backwards to the bigon containing ∞,
• and finally returns to ∞ within the bigon.

Similarly, we define a sequence of loops li approaching τ from the left as follows. The loop li is homotopic
to the path which

• travels from ∞ to the branch b0, staying within the bigon of T containing ∞,
• traverses the branches b0, b1, . . . , b2i−2, c2i−1,
• traverses the branch d2i−1 in the counterclockwise direction,
• traverses the branches c2i−1, b2i−2, . . . , b1, b0 backwards to the bigon containing ∞,
• and finally returns to ∞ within the bigon.

It is easy to see that τ is two-side approachable using the loops ri and li. We claim that γ is homotopic
to the concatenation

r1 · l1 · r1 · r2 · r1 · l1 · r1 · l2 · r1 · l1 · r1 · r2 · r1 · l1 · r1 · r3 · · ·
which is a fixed word of the substitution

f : r1 7→ r1 · l1 · r1 · r2 · r1 · l1 · r1, f : ri 7→ ri+1 for i ≥ 2, f : li 7→ li+1 for i ≥ 1

on the infinite alphabet {r1, l1, r2, l2, . . .}. The claim follows by studying the singular leaf of the horizontal
foliation of Σ through the point (0, 13 ). This leaf is fixed by the pseudo-Anosov φ and hence its trajectory can

be determined by iterating φ on the horizontal line segment [0, 1]×{ 13}. One sees that a short horizontal line
segment traveling around p2k+1 is sent to one traveling around p2k+3 and a horizontal line segment traveling
around p2k for k ≥ 1 is sent to one traveling around p2k+2. On the other hand, a horizontal line segment
traveling across the square to the right, then around p0, then across the square to the left is sent to one of
the following form. The image of the segment first travels around p0, then p1, then p0 again, then p2, then
p0, then p1, and then p0 again, traversing the square a total of eight times. The claim follows from these
facts.

Now, the 2-filling ray constructed using the sequences of loops {ri} and {li} and the numbers pk = qk = k
is the limit of the sequence of loops {αk} where α1 = r1, α2k = α2k−1 ·lk ·α2k−1, and α2k−1 = α2k−2 ·rk ·α2k−2.
Note that

α3 = r1 · l1 · r1 · r2 · r1 · l1 · r1 = f(α1).

An easy induction establishes immediately that f(αk) = αk+2 for all k. Thus, the sequence {α1, α3, α5, . . .} =
{α1, f(α1), f2(α1), . . .} approaches the limiting concatenation

r1 · l1 · r1 · r2 · r1 · l1 · r1 · l2 · r1 · l1 · r1 · r2 · r1 · l1 · r1 · r3 · · ·
as claimed.

14. Cliques with multiple non-filling rays

In this section we prove the following theorem:

Theorem 14.1. Let Ψn be the surface with a single planar end and exactly 2n non-planar ends. Then
R(Ψn) contains a clique containing exactly n 2-filling rays and n non-filling rays.

To prove the theorem we will follow the methods of Sections 8–12. Thus, we explicitly produce a lamination
Λn on Ψn using a train track. The complementary region of Λn containing the planar end p will be a 2n-gon.
There are rays to each end of this 2n-gon and we will show that n of these rays are 2-filling and the other n
rays are not 2-filling.

As it turns out, the construction relies in an essential way on the fact that Ψn has infinite genus. At
the present time, we do not know a way to get around this. Since the methods of this section are similar
to the methods of Sections 8–12, we will only give the construction and sketch the proofs that the claimed
properties of the construction hold.

First we define an infinite train track T1 and a system of weights w1 on T1. See Figure 31. The weights
of various of the branches are displayed and the weights of the remaining branches of T1 may be inferred
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from these using the switch conditions. Note that there are infinitely many branches which are loops based
at trivalent switches and these have weights 1

8·4k for k ≥ 0. There are also infinitely many branches which

are loops based at quadrivalent switches and these have weights 1
4k

for k ≥ 1.

1
3

2
3

1
8

1
4

1
32

1
16

1
128

1
2

Figure 31. The track T1 with weights w given by labels adjacent to branches.

The track T1 has a bigon which we denote by c consisting of the branches of weights 1
3 and 2

3 . For any
n ≥ 2, there is a cyclic cover πn : Tn → T1 with the property that c has a unique lift c̃n to Tn with respect
to which the restriction πn|c̃n : c̃n → c is a degree n cover of the circle c. See Figure 32 for a picture of the
tracks T2 and T3.

Figure 32. The tracks T2 and T3.

The tracks Tn carry weights wn induced by pulling back the weights w1 on T1. Namely, wn(b) = w1(πn(b))
for any branch b of Tn. For each n, the weighted train track (Tn, wn) defines a union of foliated rectangles Gn.
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These foliations are pictured in Figures 33 and 34. Please note that in these figures a number of rectangles
have been contracted to vertical line segments for ease of drawing. This has no effect on the dynamics of
the foliations.

α β

Figure 33. The foliation G1.

Figure 34. The foliations G2 and G3.

We will first study the dynamics of the foliation G1 and then leverage this to study the foliations Gn.
First we claim that every half leaf of G1 is dense except for a single singular half leaf. For this, we introduce
the pseudo-Anosov homeomorphism shown in Figure 35. As before, we see that the fixed horizontal foliation
of this homeomorphism has the same dynamics as the foliation G1. We use the pseudo-Anosov φ to study
the dynamics of G1.

Analogously to Lemma 10.2, we use the orbits of singularities of φ to prove that the union of singular
leaves of G1 is dense. By studying transverse measures, we prove, using Lemma 10.3 that every non-singular
half-leaf of G1 is dense. Moreover, as in Lemma 11.4 we see that the singularities of G1 are joined by saddle
connections to each other in such a way that T P(T1, w1) contains three boundary paths. One of these
boundary paths has both half leaves dense while exactly one half leaf of each of the other two boundary
leaves is dense.

We now leverage these claims to prove the following result:
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A B C D

A

B

C

D

Figure 35. A pseudo-Anosov homeomorphism. Again, arrows based at a common vertex
and pointing in opposite directions are identified by a rotation by π about the common
vertex.

Theorem 14.2. Every train path T P(Tn, wn) is dense. Furthermore, every half train path of T P(Tn, wn)
is dense except for 2n half train paths.

As before, the argument of [10, Theorem 12.1] shows that every half leaf of G1 is dense except for a single
ray which has an endpoint on the complementary bigon. The ray α, pictured in Figure 33 is also dense in
G1. On the other hand, the other ray beginning from an endpoint of the bigon, which we call β is not dense.

We now consider the union of foliated rectangles Gn. The ray α has exactly n lifts α1, . . . , αn to Gn,
each with an endpoint on the complementary 2n-gon to Gn. Similarly, β has n lifts β1, . . . , βn. Since every
half leaf of G1 is dense except for β, we have in particular that every half leaf besides β accumulates onto
α, and that α itself is dense. Transporting these facts to Gn, we see that the union α1 ∪ . . . ∪ αn is dense
and moreover that every half leaf of Gn not lying in {β1, . . . , βn} accumulates onto some αi. If we can show
that αi accumulates onto αj for each i, j, then we will have that each αi is dense, and thus every half leaf
of Gn not lying in {β1, . . . , βn} is also dense.

For this, we unzip the foliation Gn along the union of the red saddle connections shown in Figure 36 (see
[13, Chapter 1.7] for the notion of unzipping, which is called splitting there). We notice that the unzipped
foliation G′n is isomorphic to Gn. Each rectangle has been replaced by a rectangle of 1

4 the same height.
Denote by Ri the first rectangle which αi enters (see Figure 36). We see by unzipping that αi enters Ri+1

for each i = 1, . . . , n (indices being taken modulo n).

The foliation G′n contains n rays α′1, . . . , α
′
n defined analogously to α1, . . . , αn, which first pass through

the rectangles R′1, . . . , R
′
n of G′n, respectively. By the isomorphism of G′n with Gn, we see that α′i enters R′i+1

for each i. However, R′i is identified with a subrectangle of Ri, of 1
4 the height, intersecting αi for each i.

Thus we see that αi enters not only Ri+1 but this subrectangle of 1
4 the height intersecting αi+1. Repeating

the unzipping process infinitely many times, we see that αi accumulates onto αi+1 for each i. Consequently,
each αi accumulates onto αj for any j, as desired.

Finally, since the union of saddle connections of G1 is dense, we see that each boundary path of T P(Tn, wn)
accumulates onto the train path induced by some αi and therefore each boundary path is also dense. We
have that T P(Tn, wn) contains 3n boundary paths, 2n of which correspond to sides of the complementary
2n-gon of Gn. These 2n boundary paths each have one dense and one non-dense half path since each αi is
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R1

α1

R3

R2

α3

α2

Figure 36. The singular rays αi and the rectangles Ri that they pass through.

dense and no βi is dense. On the other hand, each half path of one of the n remaining boundary paths of
T P(Tn, wn) accumulates onto the train path corresponding to αi for some i, and thus is also dense. This
proves Theorem 14.2.

Finally, we define the lamination Λn. The train track Tn may be embedded on the surface Ψn. We
illustrate how to do this on the surface Ψ2 with four non-planar ends in Figure 37.

Collapsing parallel branches of Tn gives a locally finite train track on Ψn with a system of weights induced
by wn. We check as in Section 16 that the train paths resulting from this locally finite train track and system
of weights can be straightened to geodesics on Ψn. We verify as in Lemma 12.4 that the union is closed.
This union of geodesics is the lamination Λn. We verify that:
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Figure 37. The train track T2 embedded in the surface Ψ2.

• The lamination Λn contains n proper geodesics m1, . . . ,mn (these are where the branches of Tn
accumulate).

• The complementary region to Λn containing the planar end p is a 2n-gon.
• Rays to n of the ends of this polygon spiral onto Λn whereas rays to the other n ends of the polygon

each spiral onto one of the proper geodesics mi.
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Finally then, we form a clique of rays inR(Ψn, p) consisting of the rays to the ends of the 2n-gon containing
p. Exactly n of these are 2-filling and the other n are not 2-filling, as desired.

15. Open questions

Here is a list of open questions about 2-filling rays.

(1) Is there a collection of infinitely many disjoint 2-filling rays on the plane minus a Cantor set? See
Question 5.7.

(2) More generally, is there any restriction on the clique of rays disjoint from a 2-filling ray? Can the
clique contain more than one non-filling ray if the ambient surface is the plane minus a Cantor set?

(3) Does the limit set of a 2-filling ray always contain a proper leaf? See Question 5.8.
(4) Is a ray intersecting all proper geodesics necessarily high-filling? This is asked by Yan Mary He and

Kasra Rafi.
(5) Which kind of geodesic laminations can appear as the limit set of some two-side approachable long

ray? What about 2-filling rays? See Question 6.2.
(6) Is every 2-filling ray disjoint from some approachable long ray? See Question 7.5.

16. Appendix: construction of the lamination from the train track with weights

In this section, we verify Lemma 12.3. To do this, we show that lifts of train paths on T to Ω̃ are
uniform-quality quasi-geodesics.

We consider again the middle of Figure 29. The blue curves pictured divide Ω into a sphere V with
three boundary components and the puncture ∞ as well as infinitely many spheres with three boundary
components. We denote the spheres with three boundary components by Ui, i ∈ Z. The numbering is chosen
such that if we consider the bi-infinite sequence

. . . U−2, U−1, V, U0, U1, U2, . . .

then each surface in the sequence is joined to each of the adjacent surfaces by a boundary component.

Notice that T intersects each three-holed sphere Ui with i 6= 0 in the same subtrack. Each Ui is endowed
with an isometric hyperbolic metric with boundary components of length one. In each Ui with i 6= 0 we
isotope T so that there is an isometry Ui → Uj for each i, j 6= 0 taking the intersection T ∩ Ui to T ∩ Uj .
The components U0 and V are also equipped with hyperbolic metrics with boundary components of length
one. We glue the surfaces Ui and V together by isometries along the boundary components such that the
tracks Ui ∩ T and V ∩ T glue together to give T . Although a gluing was fixed at the beginning of the
paper, any choices of gluing give quasi-isometric surfaces, so whether or not train paths are uniform-quality
quasi-geodesics does not depend on the choice of gluing.

Note that there are exactly 17 possible train paths through the train track T ∩V (up to possibly changing
the orientation of the path). Eight of these join one of the boundary components of V to itself. They are
homotopic, keeping the endpoints on the boundary, to the eight paths drawn in Figure 38. The other nine
possible train paths join one boundary component of V to another. In particular we note the following by
inspection: no train path in T ∩ V is homotopic into ∂V .

Similarly we analyze train paths through the train tracks with stops T ∩ Ui. For each i, there are three
possible train paths through T ∩ Ui up to changing the orientation of the path, none of which is homotopic
into ∂Ui.

These facts imply the following. For any train path t ∈ T P(T,w), t consists of a concatenation

t = . . . t−1t0t1 . . .

where each ti is a train path through Wi ∩ T where Wi ∈ {Uj}j∈Z ∪ {V }, with endpoints on the boundary.
The choice of metric on the pieces of Ω, the isotopic representative chosen for T , and the upper bound of 17
on the number of train paths in T ∩Wi imply that there is an upper bound κ on the length of each segment
ti. Furthermore, no ti is homotopic into ∂Wi. Let

t̃ = . . . t̃−1t̃0t̃1 . . .
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Figure 38. The eight possible train paths through V joining a boundary component to
itself.

be a lift of t to Ω̃, where each t̃i covers the segment ti. Let L be the collection of the lifts of the curves Ci
on Ω to Ω̃. Then there is a lower bound η on the distance between any distinct L1, L2 ∈ L.

Consider a subpath s of t̃ of length D. Then s contains at least bD/κ − 1c ≥ D/κ − 2 segments t̃i. By
the fact that no ti is homotopic into ∂Wi, s crosses at least D/κ− 2 distinct elements of L each of which is
distance at least η from the next. Hence the distance between the endpoints of s is at least

(D/κ− 2)η = Dη/κ− 2η.

This proves that t̃ is a (κ/η, 2η)-quasi-geodesic.

References
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