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Abstract. These are lecture notes for the course Gromov’s Simplicial Norm and Bounded Coho-
mology in Spring 2022 at the University of Texas at Austin.
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1. Introduction to Gromov’s simplicial norm

One interesting topic in geometry and topology is to relate geometric quantities of a manifold to
topological invariants. One typical problem asks about which manifolds admit Riemannian metrics
with negative (positive, or non-positive) sectional (Ricci, or scalar) curvature.

Here we are interested in volumes of closed manifolds. Usually one needs a Riemannian metric
to make sense of it, but is it possible to get a topological invariant out of it? The Mostow rigidity
(and Gauss–Bonnet in dimension 2) implies that the volume of a hyperbolic closed manifold is
determined by its topology. Gromov’s simplicial volume, as a special case of the simplicial norm, is
a way to define this invariant in a purely topological way.

Why should one be interested in such an invariant? The following basic problem is an example
where one needs a topological notion of volume/area.

Problem 1.1. Given two orientable connected closed surfaces S, S′, what is the largest possible
degree deg(f) of a continuous map f : S → S′?

As we will see below (Lemma 1.11), the simplicial volumes of S and S′, denoted ‖S‖1 and ‖S′‖1,
satisfy

‖S‖1 ≥ |deg(f)| · ‖S′‖1
for any continuous map f . Intuitively, S needs to have enough area to cover S′ for | deg(f)| times.
This provides an upper bound ‖S‖1/‖S′‖1 when ‖S′‖ > 0, or equivalently when S′ has genus at
least two as we will prove. Moreover, the upper bound obtained this way is actually sharp, and in
Section 1.6 we will exactly determine the set of all possibly degrees

deg(S, S′) := {deg(f) | f : S → S′}.

1.1. The simplicial norm. Fix n ∈ Z≥0. Given a topological spaceX, Gromov [Gro82] introduced
a semi-norm ‖ · ‖1 on the singular homology Hn(X;R) for each n as a real vector space to measure
the size of each homology class. Recall that Hn(X;R) is the homology of the singular chain complex

· · · ∂n+2−→ Cn+1
∂n+1−→ Cn

∂n−→ Cn1

∂n−1−→ · · · ,
where Cn(X;R) is the space of singular n-chains, namely the real vector space spanned by the
set Sn(X) of all singular n-simplices. As usual, we have the subspaces Bn ⊂ Zn ⊂ Cn, where
Zn := ker ∂n and Bn := Im ∂n+1 are the spaces of cycles and boundaries respectively. So by
definition Hn(X;R) is the quotient Zn/Bn.

Given the standard basis Sn(X), equip the space Cn(X;R) with the `1-norm, i.e. |c|1 =
∑k

i=1 |λi|
for any c =

∑k
i=1 λici expressed uniquely as a (finite) linear combination of basis elements ci ∈

Sn(X) with coefficients λi ∈ R.

Definition 1.2 (Simplicial norm). The restriction of this `1-norm to Zn induces a semi-norm on
its quotient Hn(X;R), explicitly,

‖σ‖1 := inf
[c]=σ

|c|1,

where the infimum is taken over all cycles c ∈ Zn representing the homology class σ ∈ Hn(X;R).
This semi-norm is called Gromov’s simplicial norm.

In words, ‖σ‖1 is the infimal number of simplices that we need to represent σ.
The following property is immediate from the definition but important.

Proposition 1.3 (Functorial). For any continuous map f : X → Y , then the induced map f∗ :
Hn(X;R)→ Hn(Y ;R) is non-increasing with respect to the simplicial norm, i.e.

‖f∗σ‖1 ≤ ‖σ‖1
for any σ ∈ Hn(X;R).
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Proof. For any cycle c =
∑

i λici ∈ Zn(X;R) representing σ, the cycle f∗c =
∑
λif∗ci =

∑
i λi(f◦ci)

represents f∗σ. Hence by definition

‖f∗σ‖1 ≤ |f∗c|1 ≤
∑
i

|λi| = |c|1.

Since c is arbitrary, taking infimum implies

‖f∗σ‖1 ≤ ‖σ‖1.
�

Corollary 1.4 (Invariance). If f : X → Y is a homotopy equivalence, then f∗ : Hn(X;R) →
Hn(Y ;R) is an isometric isomorphism (i.e. an isomorphism that is norm-preserving) with respect
to the simplicial norm.

More generally, if for a map f : X → Y there is g : Y → X such that g∗f∗ is the identity on
Hn(X;R), then f∗ is an isometric embedding (i.e. injective and norm-preserving).

Proof. The first part easily follows from the second part by taking g to be a homotopy inverse of f .
For the second part, by functoriality of g and the fact that g∗f∗ = id, we have ‖σ‖1 = ‖(g∗f∗)σ‖1 ≤

‖f∗σ‖1. Combining with the functoriality of f , we must have ‖σ‖1 = ‖f∗σ‖1 for any σ ∈ Hn(X;R).
Hence f∗ is norm-preserving. Injectivity easily follows from the fact that g∗f∗ = id. �

It is often convenient to consider cycles with rational coefficients since they can be scaled to
integral cycles. We can always find a rational homology class arbitrarily close to a given homology
class with respect to the simplicial norm; see the lemma below. This follows from the fact that
Bn and Zn are rational subspaces. Here a point c ∈ Cn(X;R) is rational if c ∈ Cn(X;Q), and an
R-linear subspace is rational if it has a basis consisting of rational points. Any point in a rational
subspace V is a limit of rational points in V with respect to the norm | · |1 (think about it). Here
Bn and Zn are rational because the boundary maps ∂k+1 : Ck+1(X;R) → Ck(X;R) are rational
linear, i.e. obtained from Ck+1(X;Q)→ Ck(X;Q) by tensoring with R over Q.

Lemma 1.5. If σ ∈ Hn(X;Q), then ‖σ‖1 = inf |c|1 where the infimum is taken over all rational
cycles c =

∑
λici (i.e λi ∈ Q and ∂c = 0).

For a general σ ∈ Hn(X;R) and any ε > 0, there is σ′ ∈ Hn(X;Q) with ‖σ − σ′‖1 ≤ ε.

Proof. For the first part, note that Bn(X;Q) is dense in Bn(X;R) with respect to the norm | · |1,
since Bn(X;R) is a rational subspace. As σ ∈ Hn(X;Q), it can be represented by some rational
cycle c. All other (resp. rational) cycles take the form c+b with b ∈ Bn(X;R) (resp. b ∈ Bn(X;Q)),
so the result follows by density.

The second part is due to the density of Zn(X;Q) in Zn(X;R), which holds since Zn(X;R) is a
rational subspace. �

Exercise 1.6. Recall that H0(X;R) is isomorphic to the R-vector space with basis corresponding
to the path connected components of the space X. For any path component C and a point c ∈ C,
thought of as a singular 0-simplex, we have a homology class σ = [c]. Show that ‖σ‖1 = 1.

Remark 1.7. If A is a subspace of X, then we can define a simplicial (semi-)norm similarly on
the relative homology group Hn(X,A;R). Here one can treat Hn(X,A;R) as the homology of the
chain complex Cn(X,A) = Cn(X)/Cn(A) (with the induced differentials). These vector spaces are
equipped with semi-norms induced from Cn(X) and thus we can define an induced semi-norm on
Hn(X,A;R) as before. When A is empty, this agrees with our definition above.

More generally, one can analogously define simplicial norm for any normed chain complex; see
[Fri17].

Exercise 1.8. Concretely, we can think of Hn(X,A;R) = Zn(X,A)/Bn(X,A), where Bn(X,A) =
Bn(X) ∪Cn(A) and Zn(X,A) = ∂−1

n Cn−1(A), with Ci(A) treated naturally as a subspace of Ci(X)
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for both i = n− 1, n. Show that the semi-norm induced from this quotient agrees with the definition
in the remark above.

1.2. The simplicial volume. Now we specialize to measure the size of an oriented connected
compact manifold M with (possibly empty) boundary ∂M . Let n = dimM . The orientation
picks out a generator [M ] ∈ Hn(M,∂M ;Z) ∼= Z, called the fundamental class. We think of it
as a class in Hn(M,∂M ;R) ∼= R using the map Hn(M,∂M ;Z) → Hn(M,∂M ;R) induced by the
standard inclusion Z → R. Concretely, if M has a triangulation, then the sum of all n-simplices
with compatible orientation is a cycle representing the fundamental class.

Definition 1.9 (Simplicial volume). The simplicial volume of M is ‖[M ]‖1, which we often abbre-
viate as ‖M‖1. Note that the choice of orientation does not affect the simplicial volume.

IfM is non-orientable, thenM has an orientable double cover N , and we define ‖M‖1 := ‖N‖1/2.
If M is disconnected, define ‖M‖1 as the sum of volumes of its components.

Exercise 1.10. If M is orientable and closed, with finitely many components Ni. Show that∑
i ‖Ni‖1 = ‖

∑
i[Ni]‖1, which explains the definition above for the disconnected case.

Recall that, for any continuous map f : Mn → Nn between oriented connected closed (occ)
manifolds, the degree deg(f) is the unique integer such that f∗[M ] = deg(f) · [N ].

Lemma 1.11. For any continuous map f : Mn → Nn between occ manifolds, we have

|deg(f)| · ‖N‖1 ≤ ‖M‖1.
Moreover, if f is a (finite) covering map, then equality holds.

Proof. The inequality follows from functoriality (Proposition 1.3) since ‖f∗[M ]‖1 = ‖ deg(f)·[N ]‖1 =
| deg(f)| · ‖[N ]‖1.

Let c =
∑

i λici be a cycle representing the fundamental class [N ]. Each map ci : ∆n → N

has d := | deg(f)| lifts c̃ji to M , j = 1, · · · , d. Then c̃ =
∑

i

∑d
j=1 c̃

j
i is a cycle and clearly f∗[c̃] =

d[c] = | deg(f)| · [N ] = ±f∗[M ]. Hence [c̃] = ±[M ], and ‖M‖1 ≤ |deg(f)| · |c|1. Since c is arbitrary,
minimizing its norm gives the reversed inequality we desire. �

Corollary 1.12. If an orientable closed connected manifold M admits a selfmap f : M →M with
|deg(f)| > 1, then ‖M‖1 = 0.

Exercise 1.13. Extend the lemma and corollary above to the case of manifolds with boundary.

Example 1.14.
(1) For any sphere Sn, n ≥ 1, we have ‖Sn‖1 = 0.
(2) For the n-torus Tn = (S1)n, n ≥ 1 we have ‖Tn‖1 = 0.
(3) More generally, if M = S1 ×N for a closed manifold N , then ‖M‖1 = 0.

These properties of the simplicial volume help us understand the simplicial norm of certain
homology classes.

Lemma 1.15. For n ≥ 1, if a homology class σ ∈ Hn(X;R) is represented by a sphere, i.e. there
is a map f : Sn → X with f∗[Sn] = σ, then ‖σ‖1 = 0.

Proof. By functoriality and the fact that spheres (of dimension at least one) have zero simplicial
volume, ‖σ‖1 = ‖f∗[Sn]‖1 ≤ ‖Sn‖1 = 0. Thus ‖σ‖1 = 0. �

Corollary 1.16. For any X, the simplicial norm ‖ · ‖1 vanishes on H1(X;R).

Proof. Basically, every 1-cycle is a bunch of circles and thus this should follow from Lemma 1.15.
To make it precise, we use the approximation by rational cycles from Lemma 1.5 to reduce the
problem to integral cycles, which is a standard trick in these topics.
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By the second part of Lemma 1.5, it suffices to show that ‖σ‖1 = 0 for all rational homology
classes σ ∈ Hn(X;R). Any such σ is represented by some rational cycle c, and up to scaling, it
suffices to consider the case where c is integral, i.e. c =

∑
i nici for some ni ∈ Z \ {0}. Up to

changing the orientation on ci we may assume ni > 0.
Now create ni disjoint oriented segments for each ci for all i. The fact that ∂c = 0 implies that

we can pair the boundary points of these segments so that the endpoint of a segment s is always
paired with the starting point of some segment s′ so that the corresponding paths glue up in X
respecting the orientations. The end result is a closed oriented 1-manifold, i.e. a disjoint union of
finitely many oriented circles S1

k indexed by k. In other words, there is a map ϕ : tkS1
k → X such

that ϕ∗
∑

k[S
1
k ] = σ. Hence by Lemma 1.15 and the triangle inequality,

‖σ‖1 ≤
∑
k

‖ϕ∗[S1
k ]‖1 = 0,

so ‖σ‖1 = 0 as desired. �

1.3. Volumes of surfaces. In this section we aim to obtain the first nontrivial examples. We have
seen that the simplicial norm is boring on H0 and vanishes on H1. Interesting examples emerge
in H2. For orientable connected closed surfaces, we have seen in Example 1.14 that the simplicial
volume vanishes when the genus is zero or one. For surfaces of higher genus, the simplicial volume
is nonzero and is proportional to the Euler characteristic.

Theorem 1.17. For any orientable connected closed surface S of genus at least two, we have
‖S‖1 = −2χ(S).

Remark 1.18. Note that by Gauss–Bonnet, for any hyperbolic metric, S has area −2πχ(S) =
π‖S‖1, so the simplicial volume is proportional to the hyperbolic volume. The factor π is the area of
the ideal hyperbolic triangle, or equivalently, the supremum of areas of all hyperbolic triangles (ideal
or not). We will generalize this to higher dimension, which is referred to as Gromov’s proportionality
theorem.

To combine the results for all genera, it is convenient to introduce the following χ− notation.

Notation 1.19. For an orientable connected compact surface S, let χ−(S) = χ(S) if χ(S) ≤ 0
and let χ−(S) = 0 otherwise, i.e. we adjust χ(S) to 0 when S is a sphere or a disk. For a general
orientable compact surface S = tΣi with components, let χ−(S) :=

∑
χ−(Σi). In other words,

χ−(S) is the Euler characteristic of S after deleting all components homeomorphic to spheres or
disks.

Then the following theorem easily follows from Theorem 1.17 and the case of the sphere and
torus.

Theorem 1.20. For any orientable closed surface S, we have ‖S‖1 = −2χ−(S).

We will prove Theorem 1.17 by establishing inequalities in both directions, which involve two
different kinds of ideas.

The strategy for proving ‖S‖1 ≤ −2χ(S) is to construct a sequence of cycles representing the
fundamental class [S] approaching the optimal value. As we explained earlier, one concrete way
to represent the fundamental class is to triangulate S and take the formal sum of triangles with
compatible orientations.

Suppose S has a triangulation with v vertices, e edges and f faces, we know χ(S) = v − e + f .
The cycle described above has norm f .

Lemma 1.21. We have 2e = 3f , so χ(S) = v− f
2 and f = 2v− 2χ(S). Hence ‖S‖1 ≤ 2v− 2χ(S).

Proof. Each triangle has 3 edges, each of which is shared by two triangles. �
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So this is close to be optimal except for the error 2v. The best one can do here is to take a
triangulation with v = 1, which exists.

Exercise 1.22. For any occ surface S, there is a triangulation with a single vertex.

The bounded error can be remedied by taking finite covers.

Lemma 1.23. If S has genus at least one, then ‖S‖1 ≤ −2χ(S).

Proof. For any such S and any d ∈ Z+, there is a degree d cover f : S′ → S. Then by taking a
triangulation on S′ with a single vertex, we have ‖S′‖ ≤ by Lemma 1.21. Note that both χ and
‖ · ‖1 are multiplicative, i.e. dχ(S) = χ(S′) and d‖S‖1 = ‖S′‖1 (by Lemma 1.11). Thus we obtain

‖S‖1 =
‖S′‖1
d
≤ 2− 2χ(S′)

d
=

2− 2dχ(S)

d
=

2

d
− 2χ(S).

Taking d→∞, we obtain the desired inequality. �

We considered above all possible ways of representing (resp. a multiple of) the fundamental class
using triangulations (resp. of a finite cover).

The reversed inequality uses a technique called “straightening”, which involves hyperbolic geome-
try. Roughly speaking, every hyperbolic triangle has area no greater than π, and the hyperbolic area
of the surface is −2πχ(S), so one needs at least −2χ(S) triangles to cover the entire surface once.
So we just need an argument to straighten an arbitrary singular cycle representing the fundamental
class into one only involving hyperbolic triangles. We will explain this in more detail (Section 1.5)
after a crash course on hyperbolic geometry (1.4).

1.4. Some hyperbolic geometry. We give a quick introduction/review of some hyperbolic ge-
ometry, mainly to describe geodesics and isometries. A more detailed treatment can be found in
[BP92], [Thu97], or any standard textbook/notes on hyperbolic geometry.

The n-dimensional hyperbolic space Hn (n ≥ 2) is the unique (up to isometry) simply connected
complete Riemannian manifolds with constant sectional curvature −1. There are several models for
Hn, providing different ways to view the space.

1.4.1. The hyperboloid model. Consider the bilinear form 〈x, y〉 = x1y1 + · · ·+ xnyn − xn+1yn+1 on
Rn+1 for any x, y ∈ Rn+1. The set H := {x | 〈x, x〉 = −1} is a hyperboloid of two sheets. The
restriction of 〈·, ·〉 on either component gives a complete Riemannian metric of constant curvature
−1. The upper sheet H+ (i.e. with xn+1 > 0) is the hyperboloid model of Hn.

With this model, the isometry group Isom(Hn) is identified with O+(n, 1), the group of linear
transformations preserving the bilinear form 〈·, ·〉 and stabilizing the upper sheet. The isometry
group acts simply transitively on the orthonormal frame bundle, i.e. given any two points x, y ∈ Hn

and two orthonormal bases (i.e. two orthonormal frames) at the two points, there is a unique
isometry taking the frame at x to the frame at y.

An advantage of this model is that, any k-dimensional totally geodesic subspace of Hn is the
intersection with some linear subspace of dimension k + 1. In particular, bi-infinite geodesics are
intersections with planes through the origin.

The linearity provides a way to take convex combinations of points. More precisely, given k points
p1, · · · , pk ∈ Hn = H+ ⊂ Rn+1, any coefficients λ1, · · · , λk ≥ 0 with

∑k
i=1 λi = 1 uniquely determine

a point p(λ1, · · · , λk) ∈ Hn as the intersection of H+ with the segment connecting the origin with∑k
i=1 λipi ∈ Rn+1. Apparently p(λ1, · · · , λk) depends continuously on the coefficients λi, so this

defines a continuous map p : ∆k−1 → Hn, where ∆k−1 = {(λ1, · · · , λk) ∈ Rk | λi ≥ 0,
∑
λi = 1}

is the standard (k − 1)-simplex. This gives a way to straighten singular simplices in Hn: For any
c : ∆k−1 → Hn, let p1, · · · , pk be the image of the k vertices in the natural order, and let s̃tr(c) be
the map p defined above. This operation has the following properties which we record for reference
later:
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Lemma 1.24.
(1) If c1 and c2 agree on some face of ∆k−1, then so do s̃tr(c1) and s̃tr(c2).
(2) For any isometry g ∈ IsomHn, we have s̃tr(g ◦ c) = g ◦ s̃tr(c).

Proof. The first part follows from the construction. The second part holds since the isometries in
this model are linear maps, which commute with both taking convex combinations and scaling. �

The straightening operation that we will introduce in Section 1.5 relies on this construction.

1.4.2. The Poincaré ball model. In this model, Hn is identified with the open unit disk Dn ⊂ Rn
with the metric 4ds2

(1−‖x‖22)2
(at any x ∈ Dn), where ds2 is the Euclidean metric. So the metric gets

more distorted in this model compared to the Euclidean one when x is closer to the boundary.
In this model, geodesics are circular arcs perpendicular to the boundary sphere. The isometry

group consists of Möbius transformations that preserve the unit disk.

Definition 1.25. A self-diffeomorphism f of Sn = Rn ∪ {∞} is a Möbius transformation if one of
the following equivalent descriptions holds:

(1) f is a composition of inversions and reflections;
(2) f is conformal (i.e. angle preserving);
(3) f takes round spheres and hyperplanes to round spheres and hyperplanes;
(4) f is a Euclidean similarity possibly composed with an inversion, i.e. f(x) = λAi(x) + b,

where i is either the identity or an inversion, A ∈ O(n), λ > 0, and b ∈ Rn.

Here an inversion with respect to a round sphere S(p, r) in Rn centered at p of radius r is the
map on Sn = Rn∪{∞} given by i(x) = p+ x−p

‖x−p‖ ·
r2

‖x−p‖ , which fixes S(p, r) pointwise, swaps p and
∞, and preserves all rays from p so that ‖x− p‖ · ‖i(x)− p‖ = r2. The equivalence in the definition
above (when n ≥ 3) essentially follows from Liouville’s theorem:

Theorem 1.26 (Liouville). A conformal diffeomorphisms f between two open subsets of Rn with
n ≥ 3 takes the form f(x) = λAi(x) + b, where i is either the identity or an inversion, A ∈ O(n),
λ > 0, and b ∈ Rn.

See [BP92, Theorem A.3.7] for a detailed proof. A more geometric argument can be found here:
https://lamington.wordpress.com/2013/10/28/liouville-illiouminated/.

This is a good model to talk about the boundary at infinity of Hn, denoted ∂Hn. Although ∂Hn

is not part of the hyperbolic space Hn, it compactifies the space (i.e. Hn
:= Hn ∪ ∂Hn) and helps

us understand geodesics and isometries. In this model, the boundary is exactly the unit sphere
Sn−1 and the compactification Hn is homeomorphic to the closed unit disk Dn. Each bi-infinite
geodesic naturally has two endpoints on the boundary which uniquely determines the geodesic.
Each isometry extends to a homeomorphism on Hn and in particular acts on the boundary (and
the action is 2-transitive).

1.4.3. The upper-half space model. This model identifies Hn with the open upper-half space {x ∈
Rn | xn > 0} equipped with the metric ds2

x2n
, where ds2 is the Euclidean metric. Geodesics in this

model are vertical lines and circular arcs perpendicular to the hyperplane {xn = 0}. Isometries are
Möbius transformations preserving the upper-half space. The boundary can be seen as the union
of the hyperplane {xn = 0} with ∞.

1.4.4. Isometries. There is a classification of orientation-preserving isometries. Any isometry ex-
tends to a continuous homeomorphism onHn, which is topologically a closed ball. Thus by Brouwer’s
fixed point theorem, each isometry must fix some point in Hn. Given g 6= id ∈ Isom+(Hn), there
are three mutually exclusive cases:

https://lamington.wordpress.com/2013/10/28/liouville-illiouminated/
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(1) g is elliptic if it fixes some point in Hn. Up to conjugation, we may assume that g fixes the
origin 0 in the disk model, in which case g is conjugate to an orthogonal transformation in
SO(n), determined by its action on the unit tangent space at 0.

(2) g is parabolic if it has no fixed point in Hn and has a unique fixed point in ∂Hn. Up to
conjugation, we may assume that g fixes∞ in the upper-half space model, in which case we
can deduce that g is conjugate to a horizontal (i.e. preserving xn) translation on Rn.

(3) g is hyperbolic if it has no fixed point in Hn and has two fixed points in ∂Hn. Up to
conjugation, we may assume that g fixes ∞ and 0 in the upper-half space model. Then g
is the composition of a scaling with an orthogonal transformation in SO(n − 1) ⊂ SO(n)
centered at the origin fixing the xn axis. This axis is the unique bi-infinite geodesic preserved
by g, called the axis of g.

1.5. Straightening. LetMn be a hyperbolic manifold. We introduce a linear map str : Ck(M ;R)→
Ck(M ;R), called straightening. Fix the universal covering map π : Hn →M . For any singular sim-
plex c : ∆k → M , pick any lift c̃ : ∆k → Hn, which we straighten to s̃tr(c̃) : ∆k → Hn using the
construction described in Section 1.4.1. Define the straightening of c as str(c) := π s̃tr(c̃) : ∆k →M ,
which is independent of the choice of the lift since s̃tr commutes with isometries. This extends to
a linear map str : Ck(M ;R)→ Ck(M ;R).

Lemma 1.27. We have |str(c)|1 ≤ |c|1 for any chain c and ∂str = str∂. Moreover, str induces the
identity map on H∗(M ;R).

Proof. The straightening map does not increase the number of simplices, so |str(c)|1 ≤ |c|1 for any
chain c. It commutes with the boundary map by construction.

For any singular simplex c : ∆k → Hn, there is an obvious linear homotopy in Rn+1 from c to
s̃tr(c), which scales to one on Hn and projects down to a homotopy on M . Based on this, one can
build a chain homotopy between str and id, or directly observed that [str(c)] = [c] for any cycle
c. �

It follows that, when computing the simplicial norm of any homology class σ ∈ H∗(M ;R) it
suffices to look at cycles consisting of (straight) hyperbolic simplices. A key fact about hyperbolic
simplices is that their volume has a uniform upper bound only depending on the dimension, in
contrast with Euclidean simplices.

Lemma 1.28 ([BP92, Theorem C.2.1 and Lemma C.2.3]). For each n ≥ 2, let vn be the supremum
of volumes of all hyperbolic n-simplices (possibly with vertices at infinity). Then v2 = π and vn ≤

π
(n−1)! .

Remark 1.29. A theorem of Haagerup–Munkholm[HM81] shows that vn is achieved uniquely by the
regular1 hyperbolic ideal n-simplex.

Proof. Any hyperbolic simplex has volume no more than some ideal hyperbolic simplex. In fact, for
any hyperbolic simplex with vertices p0, . . . , pn ∈ Hn, choose a point p in its interior. The geodesic
rays from p to pi determines a point p′i ∈ ∂Hn for each i. The ideal hyperbolic simplex with vertices
p′0, · · · , p′n contains the starting one.

When n = 2, all ideal hyperbolic triangles are conjugate up to an isometry and have the same
area π, so v2 = π. The area can be computed explicitly in the upper-half space model, say for the
ideal triangle with vertices −1, 1,∞, or can be seen by Gauss–Bonnet.

For n ≥ 3, we show vn ≤ vn−1

n−1 by a nice computation in the upper-half space model following
[BP92, Lemma C.2.3], which implies the bound π

(n−1)! by induction. Let σ be any ideal hyperbolic n-
simplex in the upper-half space model and put one of its vertex as∞. The remaining n vertices form

1completely symmetric in the sense that the isometry group is the symmetric group on the n+ 1 vertices
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an ideal hyperbolic (n−1)-simplex τ sitting on a totally geodesic subspace X of dimension n−1 not
containing ∞ as a boundary point. So X is a round hemisphere centered at some p ∈ Rn−1 ⊂ ∂Hn.
Up to an isometry we may assume p = 0 and the sphere has radius 1. So X is the upper unit
hemisphere. The vertical projection to Rn−1 restricts to a homeomorphism from X to the unit
closed ball in Rn−1, and let s be the inverse. Explicitly, s(x) = (x, h(x)) where h(x) =

√
1− ‖x‖2.

Let τ0 be the image of τ under this projection, which is a Euclidean simplex with vertices on the
unit sphere. Then

vol(σ) =

∫
τ0

∫ ∞
h(x)

dydx

yn

=
1

n− 1

∫
τ0

dx

h(x)n−1
.

It suffices to show that ∫
τ0

dx

h(x)n−1
≤ vol(τ).

Note that s gives a way to parameterize τ using τ0, so we just need to show that the pullback of the
volume form is dominates dx

h(x)n−1 for each x in the unit ball, where we think of dx as the standard
volume form on Rn−1.

For any x, let ω be the hyperbolic volume form restricted to Ts(x)X. Note that ω evaluates to
1

h(x)n−1 for any orthonormal basis of Ts(x)X. To find out its pullback, choose an orthonormal basis
of TxRn−1. If x = 0, then Dh = 0 so s∗ is the identity map and s∗ω = dx

h(x)n−1 . If x 6= 0, we
may choose the orthonormal basis so that one of them is e1 = x

‖x‖ . Then Dh = 0 in all directions

perpendicular to e1 and Dh(e1) = ‖x‖
h(x) , so s∗ is the identity map in the subspace perpendicular

to e1, and it takes this orthonormal basis to an orthogonal basis where all elements have length 1

except that ‖s∗(e1)‖2 = 1 + ‖x‖2
1−‖x‖2 = 1

1−‖x‖2 = 1
h(x)2

. Thus s∗ω = 1
h(x) ·

dx
h(x)n−1 ≥ dx

h(x)n−1 since
h(x) ≤ 1. This verifies that the pullback of the volume form by s dominates dx

h(x)n−1 , and hence∫
τ0

dx

h(x)n−1
≤ vol(τ) ≤ vn−1.

�

Lemma 1.30. Let Mn be an oriented closed connected hyperbolic manifold. Then ‖M‖1 ≥ vol(M)
vn

.

Proof. Let c =
∑
λici be a cycle representing [M ]. By Lemma 1.27, we may assume that c consists

of straight hyperbolic simplices without increasing ‖c‖1. Let vol be the volume form. Then we have

vol(M) = 〈[M ], vol〉 =
〈∑

λici, vol
〉
≤
∑
|λi| ·max vol(ci) ≤ |c|1 · vn.

Sine c is arbitrary, we conclude that vol(M) ≤ vn · ‖M‖1. �

Remark 1.31. Conceptually, we obtained this lower bound by some sort of `1–`∞ duality, where
we used a cocycle (the volume form here) that is bounded on all straight hyperbolic simplices. This
suggests the use of bounded cocycles and bounded cohomology as a dual theory to better understand
simplicial norms.

Restricting to the case n = 2, we can now finish the proof of Theorem 1.17.

Proof of Theorem 1.17. The above lemma for M = S a hyperbolic surface, we have

‖S‖1 ≥
area(S)

v2
=
−2πχ(S)

π
= −2χ(S)

by Gauss–Bonnet. Combining with Lemma 1.23, we conclude ‖S‖1 = −2χ(S). �
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The bound in Lemma 1.30 is also sharp in higher dimensions; see Theorem 1.36. This geometric
argument also works for closed manifolds with varying negative curvature, so one can deduce that
any such manifold has positive simplicial volume. More generally, we have the following conjecture
attributed to Gromov [Gro82, p.11]:

Conjecture 1.32. Any closed manifold of non-positive curvature and negative Ricci curvature has
‖M‖1 > 0.

This is still open. See [CW19] for a recent partial positive answer that uses a slightly different
straightening and uniformly bounds the Jacobian of the straightened maps.

Similarly, this argument can be used to prove positivity of simplicial norms of other homology
classes.

Proposition 1.33. The simplicial norm is an honest norm (instead of a semi-norm) on Hk(M ;R)
for any k ≥ 2 and hyperbolic closed orientable manifold M . That is, ‖σ‖1 > 0 for any σ 6= 0 ∈
Hk(M ;R).

Proof. For any σ 6= 0, there is σ∗ ∈ Hk(M ;R) that pairs nontrivially with σ. Represent σ∗ by a
differential k-form ω. Up to scaling we may assume that |ω(V )| ≤ 1 for all k orthogonal vectors V
of norm 1 at any point on M . As a result, the restriction of ω on any straight hyperbolic k-simplex
is bounded by the volume form. Thus for any straightened chain

∑
λici representing σ, we have

|〈σ, ω〉| ≤ max vol(ci) ·
∑
‖λi‖ ≤ vk · |c|1.

It follows that

‖σ‖1 ≥
|〈σ, ω〉|
vk

> 0.

�

1.6. Application: degrees of maps between surfaces. Now we apply the calculation in The-
orem 1.20 to solve Problem 1.1 as an application.

Theorem 1.34. Given closed orientable connected surfaces S and S′ that are not spheres, the set
deg(S, S′) of all possible degrees of maps f : S → S′ is

deg(S, S′) = {d : |d · χ(S′)| ≤ |χ(S)|}.

Proof. By the degree inequality Lemma 1.11, we have deg(f) · ‖S′‖1 ≤ ‖S‖1 for any map f : S′ →
S. Since spheres are excluded, we know ‖S‖1 = −2χ(S) and ‖S′‖1 = −2χ(S′). It follows that
|d · χ(S′)| ≤ |χ(S)| for any d ∈ deg(S, S′).

It suffices to show that any such d can be realized as deg(f) for some f : S → S′. We restrict
our attention to those d > 0 since d = 0 is realized by a constant map and those negative values
can be obtained by composing with a orientation-reversing homeomorphism. Given any d > 0 with
|d · χ(S′)| ≤ |χ(S)|, there is a degree d cover p : S′d → S′. Then |χ(S′d)| = |dχ(S′)| ≤ |χ(S)|, i.e. S′d
has genus no more than that of S. So there is a map g : S → S′d with deg(g) = 1 by pinching part
of S to a point. Thus the composition f = gp has deg(f) = deg(g) · deg(p) = d. �

Exercise 1.35.
(1) If S = S2, show that deg(S, S′) = {0} unless S′ = S2, in which case deg(S, S′) = Z.
(2) If S′ = S2, show that deg(S, S′) = Z.

1.7. Gromov’s proportionality. The goal of this section is to prove the following theorem, show-
ing that the lower bound of ‖M‖1 in Lemma 1.30 is sharp:

Theorem 1.36 (Gromov’s Proportionality). Let Mn be an oriented closed connected hyperbolic
manifold. Then ‖M‖1 = vol(M)

vn
.
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Note that if for some ε > 0 we have a cycle c =
∑
λici with λi > 0, each ci straight hyperbolic

and positively oriented with vol(ci) ≥ vn − ε, then c represents λ[M ] for some λ > 0 and

(1.1) λvol(M) = 〈λ[M ], vol〉 =
∑

λivol(ci) ≥ min{vol(ci)}·
∑

λi ≥ (vn−ε)|c|1 ≥ λ(vn−ε)‖M‖1.

Thus it suffices to show the existence of such a cycle for any ε > 0.
There is no obvious construction of such a cycle. However, if we were allowed to have infinitely

many terms in a cycle, there is a natural construction. A formal way to make this work is to
define Gromov’s norm using measure homology instead of singular homology. That is, on the
set Sk(X) of singular k-simplices in X, let Ck(X) be the space of signed measures with compact
support and bounded total variation, equipped with the total variation norm. This gives a chain
complex with boundary maps defined in the usual way and induces a semi-norm on its homology
(called measure homology). Zastrow and Hansen both showed that measure homology coincides
with singular homology for CW complexes [Han98, Zas98], and Löh showed that the isomorphism
is isometric [L0̈6], thus this is an equivalent way to define Gromov’s norm as Thurston originally
claimed [Thu, Chapter 6].

The advantage is that this gives more room to construct the desired cycle in the measure sense.
In fact, any singular chain

∑
λici can be thought of as the signed measure

∑
λiδci , where δci is the

Dirac mass at ci. So in this way Ck(X) is a subspace of Ck(X).
Instead of giving a rigorous introduction of measure homology and proving the equivalence, we

briefly describe this measure cycle and then approximate it using an honest singular cycle to finish
the proof as in [Cal, Section 3.1]. For any ε > 0, let ∆ be a straight positively oriented n-simplex
in Hn so that vol(∆) > vn − ε. Let D(∆) be the space of all isometric orientation-preserving
embeddings of ∆ in Hn, which can be identified as Isom+(Hn) and comes with the Haar measure.
Then D(∆)/π1(M) can be thought of as all isometric positively oriented copies of ∆ in M , with
the induced measure. This makes it into a measure chain smear(∆) in Cn(M). Similarly, let ∆̄ be
the reflection of ∆ across some face. The same construction provides a measure chain smear(∆̄) in
Cn(M). The key fact is that smear(∆)− smear(∆̄) is a measure cycle, since every face of ∆ is the
face of its reflection across this face, and this reflection is a translate of ∆̄. Each copy of ∆̄ has the
opposite orientation, but the negative sign “corrects” it.

For the approximation, we need ∆ to be chosen with a stronger property in the beginning. It is
a fact that, for any ε > 0 and any C > 0, there is ∆ such that vol(∆′) > vn− ε for any ∆′ obtained
from ∆ by moving each vertex by a distance no more than C.

Proof of Theorem 1.36. Let F ⊂ Hn be a compact fundamental domain ofM and fix p ∈ F . For any
ε > 0 and C = diamF , let ∆ be chosen as above. For any (n+1)-tuple ~g = (g0, · · · , gn) ∈ π1(M)n+1,
let c~g be the straight hyperbolic n-simplex with vertices (g0p, · · · , gnp), which is an approximation
of those positively-oriented isometric embeddings of ∆ or ∆̄ whose vertices lie in g0F, · · · , gnF
respectively, if exist. Let λ~g (resp. λ̄~g) be the measure of such embeddings of ∆ (resp. ∆̄). Note
that both λ~g and λ̄~g are π1(M) invariant under the diagonal action of π1(M) on π1(M)n+1. Let
π : Hn →M be the universal covering map. Then set the following chains in Cn(M ;R)

c =
∑

~g∈π1(M)n+1/π1(M)

λ~gπc~g and c̄ =
∑

~g∈π1(M)n+1/π1(M)

λ̄~gπc~g

to approximate smear(∆) and smear(∆̄) respectively.

Claim 1.37.
(1) λ~g = 0 for all but finitely many ~g ∈ π1(M)n+1/π1(M), i.e. c is a singular chain, and so is

c′.
(2) If λ~g > 0 (resp. λ̄~g > 0), then vol(c~g) > vn − ε.
(3) For ε small enough, if λ~g > 0 (resp. λ̄~g > 0), then c~g is positively oriented (resp. negatively

oriented).
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(4) c− c̄ is a cycle.

Proof.
(1) Up to the π1(M) action, we may assume g0p = p ∈ F . Then the space of isometric

embeddings of ∆ with the first vertex inside F is compact, so the remaining n vertices can
only lie in finitely many possible gF .

(2) This means that c~g can be obtained from some embedding of ∆ (or ∆̄) by moving each
vertex by distance no more than C = diamF . So the assertion follows from our choice of ∆.

(3) No ∆ can be close to ∆̄ when they have large enough volume.
(4) Any face τ of c~g is a straight (n − 1)-simplex with vertices (h1p, · · · , hnp) for some hi ∈

π1(M). If a face of ∆ has an orientation-preserving isomeric embedding with vertices in
h1F, · · · , hnF , then this contributes to the coefficient of τ in ∂c by the measure of the total
measure of all such isometric embeddings of ∆. For each such embedding, its reflection across
τ is an orientation-preserving isometric embedding of ∆, so this has the same contribution
to the coefficient of τ in ∂c̄. Since this holds for all faces τ , we observe that ∂(c− c̄) = 0.

�

By the claim above, all nontrivial terms in c′ are negatively oriented, which can be made positively
oriented by adding a negative sign. Thus the cycle c − c′ can be expressed as a positive linear
combination of positively oriented straight simplices of volume at lest vn− ε, this implies vol(M) ≥
(vn − ε)‖M‖1 by equation (1.1). Since ε can be arbitrarily small, this proves vol(M)

vn
≥ ‖M‖1 and

completes the proof in combination with Lemma 1.30. �

The smearing operation in the measure homology setup does something more [Thu, Chapter
6]. If M and N are oriented closed oriented Riemannian manifolds with isometric universal cover
X, given a singular k-simplex c : ∆ → M , we can similarly do the “smearing” operation by first
lifting it to the universal cover, taking all translates of it, and projecting to N . Equipped with
the natural measure from Isom+(X), this gives a chain in Ck(N). This extends to a linear map
smearM,N : Ck(M)→ Ck(N). This has the property that smearM,N [M ] = vol(M)

vol(N) · [N ] and implies

‖N‖1
vol(N)

≤ ‖M‖1
vol(M)

.

Flipping the roles of M and N implies the following more general version of Gromov’s proportion-
ality:

Theorem 1.38 (Gromov’s Proportionality, general case). Suppose M and N are orientable closed
Riemannian manifolds with isometric universal covers, then

‖M‖1
vol(M)

=
‖N‖1

vol(N)
.

It is unclear in general though how this constant proportion is related to the geometry of the
universal cover.

2. Bounded cohomology

Bounded cohomology is a dual theory of homology with simplicial norm, and we had a glimpse
of its power in the estimate of simplicial volume of hyperbolic manifolds. It is also interesting on
its own, providing new invariants sometimes quite different from ordinary cohomology. We will first
focus on (bounded) cohomology of groups for concreteness. We will see later in Gromov’s mapping
theorem that the bounded cohomology of a connected space X is canonically isomorphic to the
bounded cohomology of π1(X), so we are not losing any information.
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2.1. Group cohomology. We start with ordinary cohomology of groups as a warm-up. A good
detailed reference on this topic is Brown’s book [Bro82].

2.1.1. K(G, 1) spaces. Given a group G, a K(G, 1) space XG is a connected aspherical CW complex
with π1(XG) = G. Here being aspherical means that all higher homotopy groups of XG vanish.
Equivalently (by Whitehead’s theorem), the universal cover of XG is contractible. Such a space is
unique up to homotopy equivalence, and is also called the Eilenberg–Maclane space or the classifying
space of the groupG (as a discrete group). The uniqueness follows from the universal property below:

Lemma 2.1. Suppose X is a K(G, 1) space. Let Y be a connected CW complex with π1(Y ) = H.
Any homomorphism ϕ : H → G is induced by a continuous map f : Y → XG, which is unique up
to homotopy.

Corollary 2.2. Suppose X and Y are both K(G, 1) spaces. Then any map f : X → Y inducing an
isomorphism f∗ : G→ G is a homotopy equivalence.

Proof. Let g∗ : G → G be the inverse of f∗. By the universal property, it is induced by a map
g : Y → X. Then gf : X → Y induces the identity map on π1(X) and hence is homotopic to the
identity map on X by uniqueness. Similarly fg is homotopic to idY , so g is a homotopy inverse of
f . �

One way to build a K(G, 1) space is to start with a 2-complex with fundamental group G and
add higher dimensional cells to kill all higher homotopy groups inductively. A similar idea can be
used to prove the universal property above. See details in [Hat02] for instance.

One can use the K(G, 1) space to give a topological definition of the group (co)homology.

Definition 2.3. Given a ring R, the homology H∗(G;R) (resp. cohomology H∗(G;R)) of G with
R coefficients is H∗(XG;R) (resp. H∗(XG;R)).

Example 2.4.
(1) For G = Z, we can take XG = S1. We know Hk(G;Z) = Hk(XG;Z) ∼= Z for k = 0, 1. Since

it is one-dimensional, we have Hk(G;Z) = Hk(XG;Z) = 0 for k ≥ 2.
(2) For a free group G = Fn with n ≥ 1, we can take XG as a graph (e.g. a wedge of circles). We

have H0(G;Z) ∼= Z, H1(G;Z) = Zn, and Hk(G;Z) = 0 for k ≥ 2 by dimension restrictions.
(3) H0(G;R) = R since K(G, 1) space is connected by definition.
(4) H1(G;R) = Ab(G)⊗Z R.
(5) H1(G;R) = Hom(G,R).
(6) For a cyclic group G = Z/m, we can choose an infinite lens space as the K(G, 1) space,

which gives Hk(Z/m;Z) ∼= Z/m for all k odd, Hk(Z/m;Z) = 0 for k > 0 and even. See
[Hat02, Example 2.43] for details in a similar computation.

It follows from the last example that no K(Z/m, 1) space can be finite dimensional. As an
application of this fact, we have:

Proposition 2.5. For any nontrivial finite group G, there is no free action on Rn.

Proof. Suppose G acts freely. Let H ∼= Z/m be a nontrivial cyclic subgroup. Then H also acts
freely on Rn. The action is also properly discontinuous since H is finite. Thus Rn/H is a K(H, 1)
space as Rn is contractible. This is a contradiction. �

2.1.2. Aside: The co-Hopfian property. The uniqueness of K(G, 1) spaces (up to homotopy) has
interesting consequences in the context of closed manifolds.

Lemma 2.6. If M and N are both connected aspherical n-manifolds (without boundary) with iso-
morphic fundamental group, then M and N are either both compact or both non-compact.
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Proof. Note that a connected n-manifoldM (without boundary) is compact if and only ifHn(M ;Z/2) ∼=
Z/2. Since M and N are K(G, 1) spaces for the same G, they are homotopy equivalent and
Hn(M ;Z/2) ∼= Hn(N ;Z/2), so they have the same compactness. �

This is related to the co-Hopfian property of fundamental groups

Definition 2.7. A group G is co-Hopfian if every injective homomorphism h : G → G is an
isomorphism.

Exercise 2.8. Show that the following groups are not co-Hopfian.
(1) G = Z.
(2) G is a free group or free abelian group.
(3) G is a free product H ?K where K is not co-Hopfian.

Lemma 2.9. If M is a closed connected aspherical manifold, then any subgroup of π1(M) that is
isomorphic to π1(M) must have finite index. In particular, if π1(M) is not co-Hopfian and M is
orientable, then M has a self-map f with |deg(f)| > 1.

Proof. Let H be a subgroup of G = π1(M) that is isomorphic to G. Let π : M ′ → M be the
covering map corresponding to the inclusion H → G. As M is aspherical, so is M ′. Since M is
closed, M ′ must be closed by Lemma 2.6, so π is a finite cover.

The isomorphism π1(M) → H can be realized as a homotopy equivalence ϕ : M → M ′, which
necessarily has | degϕ| = 1. So the composition f = πϕ is a self-map with | deg f | = | deg π| > 1 if
H is a proper subgroup. �

Corollary 2.10. If M is an orientable closed connected aspherical manifold with ‖M‖1 > 0, then
π1(M) is co-Hopfian.

Proof. As ‖M‖1 > 0, M cannot have a self-map f with |deg f | > 1 by the degree inequality. �

Asphericity is often deduced from geometry of the manifold:

Lemma 2.11. A complete Riemannian manifold M with non-positive sectional curvature is aspher-
ical. Moreover, the universal cover of M is diffeomorphic to the Euclidean space.

Proof. For any p ∈M , the exponential map TpM →M is a covering map by the Cartan–Hadamard
theorem. Hence TpM is one realization of the universal cover. �

Corollary 2.12. If M is occ with negative sectional curvature, then π1(M) is co-Hopfian.

Proof. Negative curvature implies ‖M‖1 > 0 by a straightening argument, so the assumptions of
Corollary 2.10 are met. �

Example 2.13. Let S be an occ surface of genus g > 1. Then π1(S) is co-Hopfian.

One can also prove this using the fact that infinite-index subgroups of π1(S) are free groups.

Exercise 2.14. It is crucial to assumeM to be aspherical in Corollary 2.10. Let N = M#(S2×S1)
be a connected sum, where M is an occ hyperbolic 3-manifold. Show that π1(N) is not co-Hopfian
although N is occ and has ‖N‖1 > 0.

2.1.3. The bar complex. There is also an explicit and purely algebraic definition of group (co)-
homology, which we will see to be equivalent. Consider the following bar complex with coefficients
in R. Let Cn(G;R) be the free R-module with basis consisting of n-tuples (g1, · · · , gn) ∈ Gn, and
let Cn(G,R) = HomR(Cn(G;R), R), where each element assigns a value in R to each element of
Gn. The differential ∂ : Cn(G;R)→ Cn−1(G;R) is determined by
(2.1)

∂(g1, · · · , gn) := (g2, · · · , gn) +
n−1∑
i=1

(−1)i(g1, · · · gi−1, gigi+1, gi+2, · · · , gn) + (−1)n(g1, · · · , gn−1).
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It is standard to check that ∂2 = 0 (which also follows from the topological explanation below), and
one can define H∗(G;R) as the homology of this chain complex. Similarly, take δ : Cn−1(G;R) →
Cn(G;R) as the dual of ∂ as usual, we can define H∗(G;R) using the cochains Cn(G;R).

This weird-looking differential (2.1) in the bar complex comes from the following topological
interpretation. Let EG be the simplicial complex where n-simplices correspond to elements in
Gn+1 for each n ≥ 0, where the faces of (g0, · · · , gn) are (g0, · · · , ĝi, · · · , gn) (i.e. omitting gi),
i = 0, · · · , n.Then EG is contractible since each simplicial map can be coned off, say by adding a
fixed element g ∈ G as the last coordinate. The group G acts by g(g0, · · · , gn) = (gg0, · · · , ggn),
which is a free action. Thus the quotient BG := EG/G is a K(G, 1) space.

One can think of an n-simplex as an equivalence class [(g0, · · · , gn)], where (g0, · · · , gn) ∼
(g′0, · · · , g′n) if (g′0, · · · , g′n) = (gg0, · · · , ggn) for some g ∈ G. This leads to a way to define group
(co)homology using the so-called homogeneous coordinates.

Instead, we represent each equivalence class [(g0, · · · , gn)] by an n-tuple (g−1
0 g1, g

−1
1 g2, · · · , g−1

n−1gn),
which is independent of the representative (g0, · · · , gn). This is called the inhomogeneous co-
ordinate. Then (g1, · · · , gn) in inhomogeneous coordinate corresponds to the equivalence class
[(id, g1, g1g2, · · · , g1g2 · · · gn)] in homogeneous coordinate. Geometrically, one can think of the ho-
mogeneous coordinate as marking on vertices and the inhomogeneous coordinate as marking on
edges. Under this identification, the boundary map in inhomogeneous coordinates is exactly the
differential (2.1). This justifies that the (co)homology defined using bar complex is exactly the
(simplicial) homology of the K(G, 1) space BG, and thus agrees with our topological definition.

Under this setup, a k-cochain is an assignment f : Gk → R, labeling each k-tuple in inhomoge-
neous coordinate an element in R and extending to an R-linear map on the space of k-chains.

Example 2.15. A 0-cochain is a constant in R, and δ : C0(G;R) → C1(G;R) is the zero map.
Hence every 0-chchain is a cocycle and H0(G;R) = R.

For a 1-cochain f : G → R, its coboundary is determined by (δf)(g1, g2) = f∂(g1, g2) = f(g2 −
g1) = f(g2)− f(g1g2) + f(g1). So it is a cocycle if and only if f is a homomorphism to the abelian
group R (forgetting the ring structure). This shows that H1(G;R) = Hom(G,R).

2.2. Bounded cohomology of groups. Roughly speaking„ in bounded cohomology, we consider
cochains that are bounded functions instead of arbitrary functions on Gk. For this to make sense,
we need to measure the size of elements in R. For simplicity, we consider R = R or Z, equipped
with the usual absolute value.

Then a k-cochain f in inhomogeneous coordinates as a map f : Gk → R is bounded if

|f |∞ := sup |f(g1, · · · , gk)| <∞.
Equivalently, |f |∞ is the sup norm as a linear map on the space of k-chains.

For each k, let Ckb (G,R) be the subspace of Ck(G;R) consisting of bounded cochains. Then the
coboundary restricts to map δk : Ckb (G;R) → Ck+1

b (G;R) since |δkf |∞ ≤ (k + 1)|f |∞. This gives
rise to a new chain complex.

Definition 2.16. (Bounded cohomology) Let Znb (G;R) := ker δn and Bn
b (G;R) := Im δn−1. The

n-th bounded cohomology of G is Hn
b (G;R) := Znb (G;R)/Bn

b (G;R).
The norm | · |∞ on Cnb (G;R) restricts to Znb (G;R) and induces a semi norm ‖ · ‖∞ on Hn

b (G;R).
Explicitly, for any α ∈ Hn

b (G;R),
‖α‖∞ = inf

[f ]=α
|f |∞.

It is natural to ask how bounded cohomology differs from ordinary cohomology. There is a natural
map connecting them, by treating a bounded cocycle as an ordinary cocycle.

Definition 2.17. (Comparison map) The inclusion Cnb (G;R) → Cn(G;R) induces a homomor-
phism c : Hn

b (G;R)→ Hn(G;R) called the comparison map.
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Example 2.18. As shown in Example 2.15, for degree n = 0, a 0-cochain is a constant map and
thus bounded. Thus H0

b (G;R) = H0(G;R) = R.
For degree n = 1, a 1-cochain f : G→ R is a cocycle if and only if it is a homomorphism. How-

ever, a homomorphism to R = Z,R is always unbounded except the trivial one. Thus H1
b (G;R) = 0

and the comparison map is not surjective in general.

2.3. Quasimorphisms. Nontrivial bounded cohomology classes emerge in degree n = 2. Here is
the idea: For any (n−1)-cochain f , δf is always a cocycle, but it might happen that δf is bounded
while f is not, in which case δf is a bounded n-cocycle potentially nontrivial. We will focus on
R = R throughout this section and thus often omit the coefficient.

When n = 2, as we calculated in Example 2.15, for any f : G → R, we have (δf)(g, h) =
f(g) + f(h)− f(gh). So δf is bounded exactly when f is a quasimorphism, defined as follows.

Definition 2.19. (Quasimorphism) A map ϕ : G→ R is a quasimorphism if

D(ϕ) := sup
g,h∈G

|ϕ(g) + ϕ(h)− ϕ(gh)| <∞.

The number D(ϕ) is called the defect of ϕ. Quasimorphisms can be thought of as homomorphisms
with bounded error, measured by the defect.

A quasimorphism ϕ is homogeneous if ϕ(gn) = nϕ(g) for all g ∈ G and all n ∈ Z, i.e. ϕ restricts
to a homomorphism on every cyclic subgroup.

Note that quasimorphisms on G form an R-vector space, which we denote as Q̂(G). Homogeneous
quasimorphisms form a linear subspace, denoted as Q(G). Clearly, homomorphisms to R are ho-
mogeneous quasimorphisms, i.e. H1(G) ⊂ Q(G). Also note that any bounded function ϕ : G→ R
is trivially a quasimorphism. This gives another subspace C1

b (G) = C1
b (G;R) of Q̂(G).

Every quasimorphism can be made homogeneous by the following process.

Definition 2.20. (Homogenization) For any ϕ ∈ Q̂(G), the homogenization ϕ̄ is defined as

ϕ̄(g) := lim
+∞

ϕ(gn)

n
.

Lemma 2.21. The homogenization ϕ̄ is a well-defined homogeneous quasimorphism, and ϕ̄− ϕ is
a bounded function on G. Quantitatively, we have |ϕ− ϕ̄|∞ ≤ D(ϕ).

In the proof of this lemma, we need the following fact about sub-additive sequence.

Lemma 2.22. Let an be a real-valued sequence that is sub-additive, i.e. am+n ≤ am + an for all
m,n ≥ 1. Then we have

lim
n→+∞

an
n

= inf
n≥1

an
n
.

In particular, the limit exists iff an
n is bounded below.

Proof. Clearly we have lim inf ann ≥ infn≥1
an
n . So it suffices to show that lim sup an

n ≤ infn≥1
an
n .

Fix m ≥ 1 and express any n as n = qm + r with 0 < r ≤ m. Let B = max0<r≤m ar. By
sub-additivity and induction, we have an ≤ qam + ar ≤ qam +B. Thus

an
n
≤ qam +B

qm+ r
=
am + B

q

m+ r
q

.

Hence as n→∞, we have q →∞ and

lim sup
an
n
≤ am

m
.

Since m is arbitrary, we obtain
lim sup

an
n
≤ inf

m≥1

am
m
.

�
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There is an analogous result for sup-additive sequences, replacing inf by sup, which can be
deduced by considering the sequence −an.

Now we prove Lemma 2.21.

Proof of Lemma 2.21. Fixing g ∈ G, we show that the limit defining ϕ̄(g) exists. Although the
sequence ϕ(gn) is not sup- or sub-additive, a small modification does the job.

Let ϕ+(g) := ϕ(g) +D(ϕ) and let ϕ−(g) := ϕ(g)−D(ϕ). By definition, we have |ϕ(g) + ϕ(h)−
ϕ(gh)| ≤ D(ϕ), which implies

ϕ(gh)−D(ϕ) ≤ ϕ(g) + ϕ(h) ≤ ϕ(gh) +D(ϕ),

and hence

ϕ+(gh) = ϕ(gh)−D(ϕ) + 2D(ϕ) ≤ ϕ(g) + ϕ(h)− 2D(ϕ) = ϕ+(g) + ϕ+(h).

So ϕ+ is sub-additive and similarly ϕ− is sup-additive.
It follows that

ϕ−(g) ≤ ϕ−(gn)

n
≤ ϕ+(gn)

n
≤ ϕ+(g)

for all n ≥ 1. So ϕ+(gn)
n is bounded below and ϕ−(gn)

n is bounded above. Thus both have finite limit
by Lemma 2.22 and its sup-additive analogue. The limits agree since ϕ+(gn) − ϕ−(gn) = 2D(ϕ).
As ϕ−(gn)ϕ(gn) ≤ ϕ+(gn), we have

ϕ̄(g) = lim
n→+∞

ϕ−(gn)

n
= lim

n→+∞

ϕ(gn)

n
= lim

n→+∞

ϕ+(gn)

n
.

This shows that ϕ̄ is a well-defined function.
This also gives a way to bound the difference ϕ− ϕ̄. As

lim
n→+∞

ϕ+(gn)

n
= inf

n≥1

ϕ+(gn)

n
≤ ϕ+(g) = ϕ(g) +D(ϕ),

we get
ϕ̄(g) ≤ ϕ(g) +D(ϕ).

Similarly using ϕ− we have ϕ̄(g) ≥ ϕ(g)−D(ϕ). As g is arbitrary, we conclude that |ϕ−ϕ̄|∞ ≤ D(ϕ).
In particular, ϕ̄ is a quasimorphism as the sum of ϕ and the bounded function ϕ̄− ϕ.

Finally, it remains to check that ϕ̄ is homogeneous. For every k ≥ 1, we have

ϕ̄(gk) = lim
n→+∞

ϕ(gkn)

n
= k · lim

n→+∞

ϕ(gkn)

kn
= kϕ̄(g).

For k = 0, ϕ̄(id) = lim ϕ(id)
n = 0. So it suffices to show that ϕ̄(g) + ϕ̄(g−1) = 0 to deal with k < 0.

Indeed, this easily follows from |ϕ(gn) + ϕ(g−n)| ≤ |ϕ(id)|+D(ϕ). �

Remark 2.23. The triangle inequality and the bound |ϕ−ϕ̄|∞ ≤ D(ϕ) implies that D(ϕ̄) ≤ 4D(ϕ).
A more involved argument shows that D(ϕ̄) ≤ 2D(ϕ).

Every quasimorphism uniquely decomposes as the sum of a homogeneous quasimorphism (namely,
its homogenization) and a bounded function.

Lemma 2.24. We have Q̂(G) = C1
b (G)⊕Q(G). That is, C1

b (G)∩Q(G) = 0 and Q̂(G) = C1
b (G) +

Q(G).

Proof. If ϕ ∈ C1
b (G)∩Q(G), then |ϕ(g)| = |ϕ(gn)

n | ≤
|ϕ|∞
|n| . As n is arbitrary, we must have ϕ(g) = 0

for all g.
For any ϕ ∈ Q̂(G), we have ϕ = ϕ̄ + (ϕ − ϕ̄), where the homogenization ϕ ∈ Q(G) and the

difference ϕ− ϕ̄ is a bounded function by Lemma 2.21. �
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Proposition 2.25. We have the following exact sequence

0→ H1(G;R)→ Q(G)
δ→ H2

b (G;R)
c→ H2(G;R).

In particular, the kernel of the comparison map c : H2
b (G;R) → H2(G;R) is isomorphic to the

quotient Q(G)/H1(G), which can be thought of as the space of “interesting” homogeneous quasimor-
phisms.

Proof. We just check that ker δ = H1(G) (as homomorphisms to R) and ker c = Im δ.
As we calculated in Example 2.15, (δϕ)(g, h) = ϕ(g) + ϕ(h) − ϕ(gh), so clearly H1(G) ⊂ ker δ.

Conversely, if [δϕ] = 0 ∈ H2
b (G), then δϕ = δf for some bounded function f : G → R. This

implies that ϕ− f is a homomorphism. Then we get two homogeneous quasimorphisms ϕ− f and
ϕ that differ by a bounded function f . By Lemma 2.24, we must have f = 0 and thus ϕ is a
homomorphism. Hence ker δ = H1(G).

Im δ ⊂ ker c holds by definition. Suppose α ∈ ker c, i.e. α = [δf ] for some function f : G → R.
Then δf must be bounded, so f is a quasimorphism. Since f and f̄ differ by a bounded function,
we have α = [δf ] = [δf̄ ]. As f̄ ∈ Q(G) we conclude that α ∈ Im δ. Thus Im δ = ker c. �

This gives a way to characterize the kernel of the comparison map in degree two.

Corollary 2.26. The kernel of the comparison map c : H2
b (G;R) → H2(G;R) is identified with

Q(G)/H1(G;R).

Exercise 2.27. Prove the following variant of the exact sequence in Proposition 2.25

0→ C1
b (G) +H1(G)→ Q̂(G)

δ→ H2
b (G;R)

c→ H2(G;R).

We will often use the following basic estimate, which is immediate from the definition and induc-
tion.

Lemma 2.28. Let ϕ be a quasimorphism. For g = g1 · · · gn, we have

|ϕ(g)−
∑
i

ϕ(gi)| ≤ (n− 1)D(ϕ).

In particular,
|ϕ(g)| ≤

∑
i

|ϕ(gi)|+ (n− 1)D(ϕ).

Homogeneous quasimorphisms have the following nice properties:

Lemma 2.29. Let ϕ be a homogeneous quasimorphism.
(1) If g and h commute, then ϕ(gh) = ϕ(g)+ϕ(h). So ϕ restricts to homomorphisms on abelian

subgroups.
(2) ϕ is conjugation-invariant, i.e. ϕ(g) = ϕ(hgh−1) for all g, h ∈ G.

Proof.
(1) For any n ∈ Z+, we have (gh)n = gnhn, so

n|ϕ(g) + ϕ(h)− ϕ(gh)| = |ϕ(gn) + ϕ(hn)− ϕ((gh)n)| = |ϕ(gn) + ϕ(hn)− ϕ((gnhn)| ≤ D(ϕ).

Letting n→∞ we see ϕ(g) + ϕ(h)− ϕ(gh) = 0.
(2) For any n ∈ Z+, we have

n|ϕ(g)− ϕ(hgh−1)| ≤ |ϕ(gn)− ϕ(hgnh−1)| = |[ϕ(h) + ϕ(gn) + ϕ(h−1)]− ϕ(hgnh−1)| ≤ 2D(ϕ),

where we used the fact that ϕ(h) + ϕ(h−1) = 0. Letting n→∞ we get ϕ(g) = ϕ(hgh−1).
�

Corollary 2.30. If G is abelian, then Q(G) = H1(G;R).
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Exercise 2.31. Let ϕ be a homogeneous quasimorphism. Prove that |ϕ([g, h])| ≤ D(ϕ) for all g, h,
where [g, h] = ghg−1h−1 is the commutator.

Remark 2.32. Actually Bavard [Bav91, Lemma 3.6] showed that D(ϕ) = supg,h |ϕ([g, h])|. See
also [Cal09, Lemma 2.24].

Definition 2.33. A group G is perfect if it has trivial abelianization, or equivalently, G agrees with
its commutator subgroup, i.e. each g ∈ G is a product of commutators.

We say G is uniformly perfect, if there is a uniform n ∈ Z+ such that each g ∈ G is a product of
at most n commutators.

Corollary 2.34. If G is uniformly perfect, then Q(G) = H1(G) = 0.

Proof. Suppose for n ∈ Z+, each g ∈ G is a product of at most n commutators. Then for any
homogeneous quasimorphism ϕ ∈ Q(G), and g = [a1, b1] · · · [ak, bk] with k ≤ n and ai, bi ∈ G, we
have

|ϕ(g)| ≤ |
∑
i

ϕ([ai, bi])|+ (k − 1)D(ϕ) ≤ (2k − 1)D(ϕ) ≤ (2n− 1)D(ϕ)

by Exercise 2.31. This shows that ϕ is a bounded function. Hence ϕ = 0 by Lemma 2.24. �

Lemma 2.35. For any surjective homomorphism f : G→ H, the pullback map f∗ : Q(H)→ Q(G)
is injective and defect-preserving.

Proof. The pullback is given by (f∗ϕ)(g) = ϕ(f(g)), so injectivity is immediate. As for the defect,
we have

D(f∗ϕ) = sup
g1,g2∈G

|ϕ(f(g1)f(g2))−ϕ(f(g1))−ϕ(f(g2))| = sup
h1,h2∈H

|ϕ(h1h2)−ϕ(h1)−ϕ(h2)| = D(ϕ).

�

This gives a way to obstruct homomorphisms from groups with few quasimorphisms to those
with lots of quasimorphisms.

2.4. de Rham quasimorphisms. Let ω be a 1-form on a connected closed hyperbolic manifold
Mn. Fix a based point p ∈ M and let G = π1(M,p). Then any g ∈ G is uniquely represented by
an oriented geodesic loop `g based at p. The de Rham quasimorphism (due to Barge–Ghys [BG88])
associated to ω is

ϕω(g) :=

∫
`g

ω.

Lemma 2.36. ϕω defined above is indeed a quasimorphism.

Proof. We need to bound ϕω(g) + ϕω(h)− ϕω(gh) for any g, h ∈ G.
Let M̃ ∼= Hn be the universal cover and p̃ be a lift of p. Denote by ω̃ the pullback of ω on

M̃ . Then for any g ∈ G, the unique lift of `g starting at p̃ is the geodesic ˜̀
g from p̃ to gp̃. So

ϕω(g) =
∫

˜̀
g
ω̃.

Given g, h ∈ G, we have an oriented geodesic triangle ∆ with sides ˜̀
g, g ˜̀

h and ˜̀
gh, where the

induced orientation of ∆ is opposite to the orientation on ˜̀
gh. Thus

|ϕω(g) + ϕω(h)− ϕω(gh)| =
∣∣∣∣∫
∂∆

ω̃

∣∣∣∣ =

∣∣∣∣∫
∆
dω̃

∣∣∣∣ ≤ ‖dω̃‖M̃ · area(∆) ≤ π‖dω‖M ,

where ‖dω‖ is the supremum of |dω(v)| over all orthonormal 2-frames v on M , which is finite by
compactness. Note that we also used the fact that the area of a hyperbolic triangle is uniformly
bounded by π. �



20 LVZHOU CHEN

Also note that ϕω is a homomorphism if ω is closed, as the integral over ∆. When ω is exact,
then ϕω ≡ 0.

There is also a nice description of the homogenization ϕ̄ω. For any g ∈ G, there is a unique
closed geodesic loop Lg (which is length minimizing in the free homotopy class) representing the
conjugacy of g, and ϕ̄ω(g) =

∫
Lg
ω. The reason is that, changing the base point p only varies ϕω by

a bounded amount and does not affect the homogenization. So one can move p so that `g agrees
with Lg.

2.5. Quasimorphisms on free groups. Various kinds of quasimorphisms were constructed on
free groups. Brooks constructed lots quasimorphisms that imply Q(Fn) is infinite-dimensional. A
recent construction by Rolli [Rol09] gives a simpler way to prove this, so we will start with his
construction.

2.5.1. Rolli’s construction. Let `∞(Z+) be the space of R-valued bounded functions on the set Z+,
which is an infinite dimensional space. For any f ∈ `∞(Z+), extend it uniquely to an odd function
f : Z→ R, i.e. f(−n) = −f(n) for all n.

Given f, g ∈ `∞(Z+), extended as above, define a quasimorphism ϕf,g on F2 = 〈a, b〉 as follows.
For any element w ∈ F2, express it as a reduced word in the generators w = am1

1 bn1
1 · · · a

mk
k bnk

k with
k ≥ 1 and each mi, ni ∈ Z \ {0} except that m1 or nk could be 0. Define ϕf,g(w) =

∑k
i=1 f(mi) +∑k

i=1 g(ni).
It is straightforward to check that

|ϕ(u) + ϕ(v)− ϕ(uv)| ≤ max{3|f |∞, 3|g|∞},
so ϕ is a quasimorphism.

The homogenization ϕ̄f,g can be described as follows. For any w ∈ F2, it has a reduced expression
w = uvu−1 where v is the unique cyclically reduced word in the conjugacy class of w. Then ϕ̄f,g(w) =
ϕ̄f,g(v) = ϕf,g(v) if v is not a power of the generator a or b, and clearly ϕ̄f,g(a) = ϕ̄f,g(b) = 0.

Lemma 2.37. We have an embedding `∞(Z+) → Q(F2) sending f to ϕ̄f,f . Moreover, the image
intersects H1(F2) trivially.

Proof. By the description above, for any n ∈ Z+, we have ϕ̄f,f (anbn) = 2f(n). Thus ϕ̄f,f = 0 if and
only if f = 0. The intersection with H1(F2) is trivial since ϕ̄f,f vanishes on the two generators. �

Theorem 2.38. Both Q(F2) and H2
b (F2;R) are infinite-dimensional.

Proof. Since `∞(Z+) is infinite-dimensional, the embedding above shows that Q(F2) is infinite-
dimensional. The same space embeds inQ(F2)/H1(F2) ∼= H2

b (F2;R), so it is also infinite-dimensional.
�

Corollary 2.39. If G surjects F2, then Q(G) is infinite-dimensional.

Proof. Q(F2) embeds Q(G) by Lemma 2.35. �

Note that this applies to all non-abelian free groups and closed hyperbolic surface groups.

Exercise 2.40. Generalize Rolli’s construction to a free product G = A?B. What kind of functions
on A,B do you need for the construction to work out?

2.5.2. Brooks quasimorphisms. Now we turn to the quasimorphisms constructed by Brooks, which
can be generalized to groups acting on δ-hyperbolic groups. There are two versions, big counting
quasimorphisms and little counting quasimorphisms. We follow the exposition in [Cal09, Section
2.3.2].

Let G be a free group generated by S. Fix a reduced word σ. For any g ∈ G, define the big
counting function Cσ(g) as the number of copies of σ that appear as subwords in the reduced word
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representing g. Similarly, define the little counting function cσ(g) as the maximal number n such
that there are n disjoint copies of σ in the reduced expression of g.

Example 2.41.
(1) For S = {a, b}, σ = ab, and g = aba−1baba, we have Cσ(g) = cσ(g) = 2.
(2) For S = {a, b}, σ = aba, and g = ababa, we have Cσ(g) = 2 but cσ(g) = 1. Similarly for

h = abababa, we have Cσ(h) = 3 while cσ(h) = 2.

For the discussion below, we will use the following observations.

Lemma 2.42. (1) Cσ(g−1) = Cσ−1(g) and similarly for cσ.
(2) σ and σ−1 cannot overlap as subwords.

Definition 2.43 (Counting quasimorphisms). The big counting quasimorphism associated to σ
is Hσ(g) := Cσ(g) − Cσ(g−1). The little counting quasimorphism associated to σ is hσ(g) :=
cσ(g)− cσ(g−1).

Lemma 2.44. Clearly from the definition, Hσ(g−1) = −Hσ(g) and similarly for hσ.

We show below that these are indeed quasimorphisms and we estimate their defect. For a reduced
expression u = u1u2, let s = 1 (resp. s = −1) if a copy of σ (resp. σ−1) appears in the juncture,
and let s = 0 if no w or w−1 appears.

Lemma 2.45. With the notation above , we have

0 ≤ s · (Hσ(u)−Hσ(u1)−Hσ(u2)) ≤ |σ| − 1,

and hσ(u)− hσ(u1)− hσ(u2) = 0 or s.

Proof. If σ does not appear in the juncture, then cσ(u) = cσ(u1) + cσ(u2) and Cσ(u) = Cσ(u1) +
Cσ(u2).

If σ appears in the juncture, there are at most |σ| − 1 subwords of length |σ| in the juncture, so
Cσ(u)− Cσ−1(u1)− Cσ−1(u2) ≤ |σ| − 1.

As for cσ, clearly cσ(u1) + cσ(u2) ≤ cσ(u). Consider a collection of cσ(u) disjoint copies of σ in
u. There is at most one copy that lies in the juncture. The remaining copies are disjoint and either
in u1 or u2. Thus cσ(u1) + cσ(u2) ≥ cσ(u)− 1. Hence cσ(u)− cσ(u1) + cσ(u2) = 0, 1.

Combining these observations proves the lemma. �

Lemma 2.46. We have D(Hσ) ≤ 3(|σ| − 1) and D(hσ) ≤ 3. Thus Hσ and hσ are indeed quasi-
morphisms.

Proof. For any g, h ∈ G, there are unique reduced expressions g = uv−1, h = vw−1 and gh = uw−1.
Then

Hσ(g) +Hσ(h)−Hσ(gh) = Hσ(uv−1) +Hσ(vw−1) +Hσ(wu−1)

= (Hσ(uv−1)−Hσ(u)−Hσ(v−1))

+ (Hσ(vw−1)−Hσ(v)−Hσ(w−1))

+ (Hσ(wu−1)−Hσ(w)−Hσ(u−1)),

where each parenthesis has absolute value is at most |σ| − 1 by Lemma 2.45. Hence D(Hσ) ≤
3(|σ| − 1). The same method shows that D(hσ) ≤ 3. �

Intuitively, we can think of g, h, (gh)−1 as a tripod with legs u, v, w. Whenever there is a copy of
σ that appears in one of the three legs, there is a copy of σ−1 that appears on the opposite side to
cancel out the contribution to the defect. So the contribution only comes from copies of σ and σ−1

that lie in the juncture, but there are limited spaces at the junctures, giving the defect bound.
It is straightforward to check that
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Lemma 2.47. The homogenization of Hσ applied to g is the number of copies of σ (minus the
number of copies of σ−1) as cyclic subwords in the cyclically reduced word representing the conjugacy
class of g.

Exercise 2.48. Prove the following.
(1) If g is a word shorter than σ, then Hσ(g) = 0.
(2) If g is cyclically reduced word and σ = g2, then H̄σ(g) ≥ 1 > 0, although g is shorter than

σ.
(3) If H̄σ(g) > 0 for some g shorter than σ, show that σ = uvu as a reduced expression for some

nontrivial subword u.
(4) In every conjugacy class, there is some (cyclically reduced) σ such that H̄σ(g) = 0 for all g

shorter than σ.
Hint: Use a lexicographical order on reduced words and take a minimal one in the cyclical

reduced words in the given conjugacy class. This is from [Tao16, Lemma 3.1].
(5) Given the above result, find an infinite sequence of distinct σn so that {H̄σn}n are linearly

independent homogeneous quasimorphisms.

2.6. The rotation quasimorphism and circle dynamics. Now we construct a quasimorphism in
relation to circle dynamics. Throughout this section, let T = Homeo+(S1), the group of orientation-
preserving homeomorphisms on the circle. Every such homeomorphism f lifts to an orientation-
preserving homeomorphism f̃ on R, where we think of R as the universal cover of S1 via the map
R → R/Z ∼= S1. Then f̃ commutes with the deck transformation, i.e. f̃(x + 1) = f̃(x) + 1, and
conversely any orientation-preserving homeomorphism on R descends to one on S1. This leads to a
new group

T̂ = {g ∈ Homeo+(R) | g(x+ 1) = g(x) + 1},
which has a natural map π : T̂ → T . The kernel kerπ = Z is the set of translations by integers as
the lifts of a given map are unique up to a deck transformation. Thus we have a central extension

1→ Z→ T̂ → T → 1.

We aim to build a quasimorphism r̃ot on T̂ , which descends to a map rot : T → R/Z so that
rot(f) captures the dynamical properties of f for any f ∈ T = Homeo+(S1).

For any p ∈ R, let τp(f) = f(p)− p for any f ∈ T̂ .

Lemma 2.49. τp is a quasimorphism and D(τp) ≤ 1.

Proof. For any f, g ∈ T̂ , we need to estimate τp(fg)− τp(f)− τp(g) = f(g(p))− g(p)− (f(p)− p).
Note that changing g to g+n does not affect this quantity for any n ∈ Z and the same for f . Hence
we may assume p ≤ g(p) < p + 1, and p ≤ f(p) < f(p) + 1. As f is orientation-preserving, the
bound for g(p) implies

f(p) ≤ f(g(p)) < f(p+ 1) = f(p) + 1.

Combining with the bound for g(p) we obtain

(f(p)− p)− 1 = f(p)− (p+ 1) ≤ f(g(p))− g(p) ≤ (f(p) + 1)− p = (f(p)− p) + 1.

Thus
|τp(fg)− τp(f)− τp(g)| = |f(g(p))− g(p)− (f(p)− p)| ≤ 1.

Hence D(τp) ≤ 1. �

Lemma 2.50. For any p, q ∈ R, the difference τp − τq is a bounded function on T̂ .

Proof. Note that τp+n(f) = f(p+ n)− (p+ n) = f(p)− p = τp, so we may assume q ≤ p < q + 1.
Then f(q) ≤ f(p) < f(q) + 1. Thus

−1 ≤ f(p)− f(q)− (p− q) ≤ 1,
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i.e. |τp(f)− τq(f)| ≤ 1 for all f . �

It follows that the homogenization τp does not depend on p.

Definition 2.51 (Rotation quasimorphism). The rotation quasimorphism r̃ot ∈ Q(T̂ ) is the homog-
enization of τp for any p ∈ R. As an explicit formula, taking p = 0, we have r̃ot(f) = limn→+∞

fn(0)
n .

r̃ot(f) is sometimes called the translation number of f . It measures how fast f moves forward on
average.

For any f ∈ T , its rotation number rot(f) ∈ R/Z is r̃ot(f̃) mod Z for any lift f̃ ∈ T̂ of f .

Example 2.52. For any translation g(x) = x+ α, α ∈ R, we have r̃ot(g) = α.

We will first show that rationality of the rotation number characterizes the existence of periodic
orbits. We say x ∈ S1 is n-periodic under f ∈ T if fn(x) = x. If n = 1, then x is a fixed point. We
say f has a periodic orbit if there is some x is n-periodic for some n.

Lemma 2.53. g ∈ T̂ has a fixed point if and only if r̃ot(g) = 0.

Proof. Suppose g(p) = p, then gn(p) = p for all n, i.e. τp(gn) = 0. Hence r̃ot(g) = 0.
Suppose g has not fixed point, then either g(x) < x for all x ∈ R or g(x) > x for all x ∈

R. Without loss of generality, suppose g(x) > x for all x ∈ R. Note t := infx∈R(g(x) − x) =
infx∈[0,1](g(x)− x) as g(x+ 1) = g(x) + 1, it must be achieved by some x0 ∈ [0, 1] by compactness.
So we have g(x) − x ≥ g(x0) − x0 = t > 0. Thus gn(0) > gn−1(0) + t > · · · > nt, and r̃ot(g) =

lim gn(0)
n ≥ t > 0. Thus g must have fixed point if r̃ot(g) = 0. �

Lemma 2.54. g ∈ T̂ has r̃ot(g) = m
n as a reduced fraction with n ∈ Z+ and m ∈ Z \ {0} if and

only if there is p ∈ R such that gn(p) = p+m.

Proof. If gn(p) = p+m, then it is easy to see that r̃ot(g) = m
n as before.

If r̃ot(g) = m
n , then r̃ot(gn) = m and r̃ot(gn−m) = 0. Thus by Lemma 2.53 we know (gn−m)(p) =

p for some p ∈ R, i.e. gn(p) = p+m. �

Theorem 2.55. For f ∈ T , f has a periodic orbit if and only if rot(f) ∈ Q mod Z. Moreover, f
has an n-periodic point if and only if rot(f) ∈ 1

nZ mod Z. In particular, f has fixed points if and
only if rot(f) ≡ 0 mod Z.

Proof. Let f̃ ∈ T̂ be an arbitrary lift of f . Then x ∈ S1 is n-periodic under f if and only if it has
a lift p ∈ R such that f̃n(p) = p + m for some m ∈ Z. So the conclusion follows easily from the
previous lemmas. �

Here is the general structure of an element f ∈ T acting with a fixed point. Let Fix(f) be the
set of fixed points, which is a closed subset of S1.

Lemma 2.56. The action of f on each complementary interval I of Fix(f) is conjugate to a
nontrivial translation T on R. That is, there is a homeomorphism h : I → R such that hf = Th.

Proof. Choose any x0 ∈ I and let xn = fn(x0) for all n ∈ Z. Since I ∩ Fix(f) = ∅, f |I is a
monotone. Without loss of generality, assume xn+1 > xn for all n (where the order is induced from
the orientation on I ⊂ S1). Let In = [xn, xn+1]. Then ∪nIn = I since {xn} has no accumulation
point inside I (which would be a fixed point of f if otherwise). Note that fn(I0) = In for all n ∈ Z.

Choose an arbitrary homeomorphism h0 : I0 → [0, 1] with h0(x0) = 0 and h0(x1) = 1. Define
h : I → R by setting h|In = Tnh0f

−n for all n ∈ Z, where T (x) = x + 1 is the unit translation on
R. It follows that h(In) = [n, n+ 1] and h(xn) = n for all n ∈ Z. It is easy to check by construction
that h is a homeomorphism2 and hf = Th. �

2If one asks for h that is orientation preserving where R is equipped with the usual orientation and I has the
induced orientation, then we might need to choose T as T (x) = x− 1
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As a byproduct, we have the following observations.

Lemma 2.57. If f ∈ T has fixed points, then f = [a, b] for some a, b ∈ T .

Proof. Note that the unit translation T (x) = x+1 is a commutator [u, v] of two dilations u(x) = 2x
and v(x) = 2(x+ 1)− 1. Thus by the previous lemma, for each complementary interval I of Fix(f),
there are homeomorphisms uI , vI on Ī fixing both end points such that f |Ī = [uI , vI ]. Define
u|Ī = uI for each complementary interval I and u|Fix(f) = id|Fix(f), and define v similarly. Then by
construction, u, v ∈ T and [u, v]|I = f |I . It follows that f = [u, v] as desired. �

Proposition 2.58. T = Homeo+(S1) is uniformly perfect. More precisely, each f ∈ T is a product
of at most two commutators.

Proof. By the previous lemma, It suffices to show that for any f ∈ T there is a commutator [a, b]
with a, b ∈ T such that [a, b]f has a fixed point. Indeed, for any x, y ∈ S1, there is a commutator
that takes x to y, which can be done by fixing an arbitrary nontrivial commutator and conjugating
it appropriately. �

By Corollary 2.34, we have

Corollary 2.59. Q(Homeo+(S1)) = 0.

Let us now go back to the relation between rotation numbers and circle dynamics. Ideally, one
would like to understand the dynamics up to conjugacy. However, in circle dynamics, it is often
natural to consider a weaker equivalence, generated by semi-conjugacy.

Definition 2.60. A map h : S1 → S1 is a semi-conjugacy between two actions ρ1, ρ2 : G→ T of a
group G if h is a surjective continuous map of degree one and hρ1(g) = ρ2(g)h for all g. When h is
a homeomorphism, then it is called a conjugacy.

Here we are considering a single map f ∈ T , which we can treat as a Z action on S1 via n 7→ fn.
Denjoy’s construction is a standard way to cook up a new action on the circle from an existing

one that is semi-conjugate but often not conjugate.

Example 2.61 (Denjoy’s construction). Suppose ρ : G → T is an action that admits a countable
G-invariant subset O ⊂ S1. Note that O always exists if G is a countable group, say by taking a
G-orbit. Enumerate O as O = {xn}n≥1 and choose a sequence of positive integers {an}n≥1 such
that

∑
n≥1 an <∞.

Replace each xn by a closed interval In of length an, we obtain a new circle Y ∼= S1 and a natural
surjective continuous map h : Y → S1 of degree one, where h collapses each In to xn. We have a
new action ρ′ of G on Y : for each g ∈ G, define ρ′(g)(x) = x if x /∈ ∪In and ρ′(g) : In → Im is the
unique orientation preserving linear homeomorphism if ρ(g)(xn) = xm. Then hρ′(g) = ρ(g)h for all
g ∈ G.

An action is minimal if the only closed invariant subsets are either empty or the entire space, or
equivalently, every orbit is dense. Note that the action on Y is never minimal since Y \∪nint(In) is
a nontrivial closed invariant subset, where int(In) is the interior of In. Hence if the starting action
ρ is minimal, then the two actions are semi-conjugate but not conjugate.

Now we consider the case where the rotation number of f ∈ T is irrational and show that the
action is semi-conjugate to the irrational rigid rotation by rot(f). This is an old theorem due to
Poincaré.

Theorem 2.62 (Poincaré). If f ∈ T has rot(f) = α /∈ Q/Z, then there is a surjective continuous
degree one map h : S1 → S1 such that hf = Tαh, where Tα is the rigid rotation on S1 = R/Z by α.
Moreover, if f acts minimally, then h is a homeomorphism.

To prove this, we need the following lemmas.
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Lemma 2.63. For any g ∈ T̂ , the set {gn(x)− x− nr̃ot(g)}n∈Z is bounded for any x ∈ R.

Proof. Recall that τx(g) = g(x)−x and r̃ot is the homogenization of τx. Then τx− r̃ot is a bounded
function. In particular, its evaluation on {gn}Z must be bounded, that is, {gn(x)−x−nr̃ot(g)}n∈Z
is a bounded set. �

Remark 2.64. One can use this property as the definition of r̃ot(g).

Lemma 2.65. For any g ∈ T̂ with r̃ot(g) = α, there is a monotone map h̃ : R → R such that
h̃(x+ 1) = h̃(x) + 1 and h̃g = Tαh̃, where Tα is the translation by α.

Proof. Define h̃(x) := supn∈Z{gn(x)− nr̃ot(g)} for each x ∈ R. Note that this is a finite number as
we are taking the supremum of the bounded set in Lemma 2.63 translated by x.

Clearly gn(x+1)−nr̃ot(g) = 1+[gn(x)−nr̃ot(g)], so h̃(x+1) = h̃(x)+1. Moreover, h̃(x) ≥ h̃(y)
for all x ≥ y since gn(x) ≥ gn(y).

Since gn(g(x))− nr̃otg = r̃ot(g) + [gn+1(x)− (n+ 1)r̃ot(g)], we have h̃(g(x)) = h̃(x) + r̃ot(g) =

h̃(x) + α. Thus h̃g = Tαh̃. �

Proof of Theorem 2.62. Fix a lift g = f̃ ∈ T̂ of f , and let h̃ be the map from Lemma 2.65. It
descends to a (degree one) map h : S1 → S1 since h̃ commutes with integral translations. Since h̃ is
monotone, it is continuous if and only if it is surjective (i.e. it has no jumps). Let Jump(h̃) be the
complement of the image of h̃, which is a countable union of nontrivial intervals, invariant under
integral translations and translation by α. Thus they descend to a countable union of intervals on
S1 invariant under Tα.

Since α is irrational, every orbit of Tα is dense, so Jump(h̃) is empty. Hence h̃ is continuous and
surjective, and so is h. Then it is easy to check that h gives the desired semi-conjugacy.

The preimage h̃−1(x) of any x ∈ R is an interval. The union U of the interiors of such intervals
is invariant under integral translations and under f̃ . So it descends to a union of open intervals on
S1 invariant under f . If every orbit of f is dense, then U must be empty. So in this case, h̃ and h
are injective. Hence h is a conjugacy when f acts minimally. �

Remark 2.66. When f has rational rotation, it is possible that Jump(h̃) is a nontrivial collection
of intervals. One can collapse them to get a semi-conjugacy, but the resulting space is not a circle if
h has finite image. However, one can first “blow up” the starting circle by Denjoy’s construction so
that Fix(f) has interiors, then the semi-conjugacy works for the blow-up circle. Thus f is equivalent
to the rigid rotation by rot(f) in all cases under the semi-conjugacy relations.

Exercise 2.67. Let f ∈ T be the boundary map of a parabolic element in PSL2(R). How does h̃
behave in the construction above? What if f is the boundary map of a hyperbolic element?

For the more general question of understanding G actions on S1 for groups G other than Z, we
will discuss it later using the bounded Euler class living in H2

b (G;Z), which is closely related to the
rotation number.

2.7. Amenable groups. We discuss basic properties of amenable groups and their relations to
bounded cohomology. There are many equivalent definitions of amenability. Here we start with two
most common ones and focus on the case of discrete groups (instead of the more general setting of
locally compact groups). Let L∞(G) = C1

b (G) be the space of bounded functions on G equipped
with the sup norm, which admits a G-action, where (gf)(h) = f(g−1h) for all h ∈ G and f ∈ L∞(G).

Definition 2.68 (Amenable). A discrete group G is amenable if there is an invariant mean m,
which is a linear functional m : L∞(G)→ R such that

(1) m(f) ≥ 0 if f ≥ 0,
(2) m(1G) = 1, where 1G is the function taking constant value 1, and
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(3) m(gf) = m(f) for all g ∈ G and f ∈ L∞(G).

Equivalently, one can think of this as a (left) G-invariant finitely additive (non-negative) measure
µ on G with total mass 1, where µ(A) = m(1A) for all A ⊂ G. The other direction of the equivalence
is given by m(f) =

∫
G f dµ.

Example 2.69.
(1) Any finite group G is amenable, where m(f) = 1

|G|
∑

g∈G f(g).
(2) The free group G = F2 is not amenable. Suppose there is a G-invariant finitely additive

measure µ. Then µ({id}) = 0 since otherwise µ(G) won’t be finite. We express G \ {id} =
Xa tXa−1 tXb tXb−1, where X∗ is the set of elements starting with ∗. Note that a(Xb t
Xb−1) ⊂ Xa, so µ(Xb tXb−1) ≤ µ(Xa). Similarly µ(Xa tXa−1) ≤ µ(Xb). Thus µ(Xa) ≤
µ(Xb) ≤ µ(Xa) − µ(Xb−1). So we must have µ(Xb−1) = 0. For the same reason, we must
have µ(Xa) = µ(Xa−1) = µ(Xb) = 0, which implies µ(G) = 0, contradicting that µ(G) = 1.

Amenability interacts nicely with subgroups and quotients.

Lemma 2.70.
(1) If G is amenable, then every subgroup H ≤ G is amenable.
(2) If G is amenable, then every quotient group Q = G/N is amenable.
(3) If for a normal subgroup N / G, both N and Q = G/N are amenable, then G is amenable.

Proof.
(1) Let µ be a left G-invariant finitely additive measure with µ(G) = 1. Let {Hgλ}λ∈Λ be the

right cosets. For any A ⊂ H, define ν(A) := µ(∪λ∈ΛAgλ). Then clearly ν is a finitely
additive measure on H with ν(H) = 1, and left G-invariance of µ implies left H-invariance
of ν.

(2) Let µ be a G-invariant finitely additive measure with µ(G) = 1. For any A ∈ Q, define
ν(A) = µ(π−1(A)), where π : G→ Q is the quotient map. Then clearly ν is a finitely additive
measure on Q with ν(Q) = 1. To see the Q-invariance, for any q ∈ Q, let g ∈ π−1(q), and
then π−1(qA) = gπ−1(A), so ν(qA) = µ(gπ−1(A)) = µ(π−1(A)) = ν(A) by G-invariance of
µ.

(3) Let µN and µQ be the invariant measures witnessing the amenability ofN andQ respectively.
For any A ⊂ G, define a function fA : Q → R by fA(gN) = µN (N ∩ g−1A). This is a
bounded function on Q so we can define µ(A) :=

∫
Q fA dµQ. It is easy to check that µ is

a finitely additive measure with µ(G) = 1. To see its invariance, note that fhA(hgN) =
µN (N ∩ g−1A) = fA(gN), so h̄−1fhA = fA, where h̄ is the image of h ∈ G in Q. So fhA and
fA have the same integral and hence µ(hA) = µ(A) for all h ∈ G.

�

Proposition 2.71. Z is amenable.

Proof. Let P(Z) be the power set of Z. Finitely additive probability measures on Z is a closed subset
P of [0, 1]P(Z), equipped with the product topology. For any ε > 0, consider the subset Pε ⊂ P
of ε-almost invariant measures, i.e. those µ ∈ P satisfying |µ(zA) − µ(A)| ≤ ε for all A ⊂ Z and
a chosen generator z ∈ Z. This is a closed subset and thus compact since [0, 1]P(Z) is compact by
Tychonoff’s theorem. The intersection ∩ε>0Pε consists of Z-invariant measures, which is nonempty
as long as we show Pε 6= ∅ for each ε > 0.

For each N ∈ Z+, let µN (A) = |A∩[−N,N ]|
2N+1 . Then µN ∈ P and |µN (gA) − µN (A)| ≤ 2

2N+1 . So
µN ∈ Pε if N is large enough, verifying that Pε is nonempty. This completes the proof. �

Remark 2.72. The subset [−N,N ] of Z has the property that its boundary is small compared to
the size of the entire subset, and the ratio goes to zero as N goes to infinity. This is an example of
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a Følner sequence. The argument above generalizes to show that any group with a Følner sequence
is amenable, which is actually an equivalent definition.

Exercise 2.73. Show that the direct limit of amenable groups is amenable.

Proposition 2.74. Solvable groups are amenable.

Proof. Note that we have shown that all cyclic groups are amenable. By Lemma 2.70 (3) and
induction, all finitely generated abelian groups are amenable. Any abelian group is the direct limit
of finitely generated ones, so they are amenable by the exercise above.

For any solvable group, we can see by induction and Lemma 2.70 (3) that its derived subgroups
are amenable, based on the fact abelian groups are amenable. �

2.8. Vanishing results. Amenable groups have trivial bounded cohomology and in particular no
interesting homogeneous quasimorphisms. We give a direct proof of the latter result.

Proposition 2.75. If G is amenable, then Q(G) = H1(G).

Proof. Given any ϕ ∈ Q(G), we aim to show that ϕ is a homomorphism. Note that ϕ(gh)−ϕ(g)−
ϕ(h) is a bounded function in variables g, h ∈ G. So for any fixed g, the one-variable function
fg : G→ R defined by fg(h) = ϕ(gh)− ϕ(h) is bounded. As G is amenable, let f(g) = m(fg) ∈ R.
This provides a function f : G → R, which we claim to be a homomorphism and is bounded away
from ϕ. Then ϕ = f by Lemma 2.24.

Indeed, the function fg − ϕ(g) is bounded by −D(ϕ) and D(ϕ) from below and above, so its
mean m(fg)− ϕ(g) = f(g)− ϕ(g) has absolute value bounded by D(ϕ), which holds for all g ∈ G.
So |f − ϕ| ≤ D(ϕ).

To show that f is a homomorphism, note that f(g1g2) is the mean of fg1g2 and

fg1g2(h) = ϕ(g1g2h)− ϕ(h)

= [ϕ(g1g2h)− ϕ(g2h)] + [ϕ(g2h)− ϕ(h)]

= fg1(g2h) + fg2(h)

= (g−1
2 fg1)(h) + fg2(h).

So
m(fg1g2) = m(g−1

2 fg1) +m(fg2) = m(fg1) +m(fg2)

by the invariance of the mean m. That is, f(g1g2) = f(g1) + f(g2). So f is a homomorphism as
desired. �

Instead of directly proving vanishing results for bounded cohomology of amenable groups, we
deduce it from the following exact sequence for amenable covers.

Theorem 2.76 (Johnson, Trauber, Gromov). Suppose there is a short exact sequence of groups

1→ K → G→ A→ 1,

where A is amenable. Then there the induced map Hn
b (G)→ Hn

b (K)A is an isometric isomorphism
with respect to the standard semi norm, where Hn

b (K)A denotes the A invariant part. In particular
(by taking K = 1 and G = A), Hn

b (A) = 0 for all n.

Proof. Here we give a topological proof, interpreting Hn
b (G) as the bounded singular cohomology

of a K(G, 1) space XG; More details about this equivalence will be explained in the next section.
Let π : XK → XG be the covering space of XG corresponding to the normal subgroup K. Then A

acts on XK as deck transformations. Then Cnb (XG) naturally corresponds to Cnb (XK)A by pullback,
the A-invariant cochains on XK . This correspondence commutes with the coboundary and induces
a map π∗ : Hn

b (XG) → Hn
b (XK), which is non-increasing with respect to the sup norm, and the

image clearly lies in Hn
b (XK)A.
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Let m be an invariant mean on A. This gives a map going backwards m : Cnb (XK)→ Cnb (XK)A

as follows. For any α ∈ Cnb (XK) and singular simplex ∆ → XK , we have a bounded function f
on A defined as f(a) = α(a∆). Define m(α)(∆) = m(f). The A-invariance implies that m(α) is
A-invariant. It is straightforward to check that m is linear, commutes with the coboundary, and
m ◦ π = id. Thus it induces a map m∗ : Hn

b (XK) → Hn
b (XG) so that m∗ ◦ π∗ = id. This shows

that π∗ is injective. Moreover, both m∗ and π∗ are non-increasing with respect to the sup norm, so
m∗ ◦ π∗ = id also implies that π∗ is an isometric embedding.

To see that the image of π∗ is Hn
b (XK)A, it suffices to show that any class σ ∈ Hn

b (XK)A is
represented by a cocycle in Cnb (XK)A. Let α ∈ Cnb (XK) be a cocycle representing σ. Since σ is
A-invariant, we know that, for any a ∈ A, we have aα − α = δfa for some fa ∈ Cn−1

b (XK). For
every singular (n− 1)-simplex ∆→ XK , define f(∆) as the mean of fa(∆) as a bounded function
over a ∈ A. It is bounded because α is. Then it follows by averaging that m(α) − α = δf , so
[m(α)] = [α] = σ and m(α) ∈ Cnb (XK)A as desired. �

There is also a result for surjection with amenable kernel.

Theorem 2.77 (Gromov). Suppose there is a short exact sequence of groups

1→ A→ G→ H → 1,

where A is amenable. Then the induced map Hn
b (H)→ Hn

b (G) is an isometric isomorphism.

In degree two, this generalizes to the (left) exactness of H2
b .

Theorem 2.78 (Bouarich). Suppose there is an exact sequence of groups

K
i→ G

π→ H → 1.

Then the following induced sequence is exact:

0→ H2
b (H)→ H2

b (G)→ H2
b (K).

Similarly,
0→ Q(H)→ Q(G)→ Q(K).

Proof. We prove this for homogeneous quasimorphisms. This is to show the exactness of 0 →
Q(H)→ Q(G)→ Q(K). The case of H2

b is similar and can be found in [Cal09, Section 2.7.2].
The injectivity π∗ : Q(H) → Q(G) follows from the fact that this map is defect non-decreasing,

which is apparent by the surjectivity of G→ H.
The remaining nontrivial part is to show that ker i∗ ⊂ Imπ∗. Suppose ϕ ∈ Q(G) vanishes on

the image of K. We may assume K = kerπ. Then we aim to show that ϕ(gk) = ϕ(g) for all
g ∈ G and k ∈ K. Note that for any n ∈ Z, we have π((gk)n) = π(gn), so (gk)n · g−n ∈ K and
ϕ((gk)n · g−n) = 0. Hence

|ϕ((gk)n) + ϕ(g−n)| ≤ D(ϕ),

that is |ϕ(gk)−ϕ(g)| ≤ D(ϕ)/n. Taking n→∞ we conclude ϕ(gk) = ϕ(g) for all g ∈ G and k ∈ K
as desired. �

2.9. Bounded cohomology of topological spaces. Given a topological space X, its singular
cohomology is defined by cochains Cn(X;R), which are functions on the space of singular simplices.
The bounded singular cohomology Hn

b (X;R) is defined in the same way replacing each Cn(X;R)
by the subspace Cnb (X;R) of bounded functions, which is equipped with a sup-norm. The norm
induces a semi norm ‖ · ‖∞ on Hn

b (X;R) as usual, by minimizing the sup norm of bounded cochains
representing the given bounded cohomology class.

Then it is straightforward to see that
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Lemma 2.79. Any continuous map f : X → Y induces a map f∗ : Hn
b (Y ) → Hn

b (X) such that
‖f∗(α)‖∞ ≤ ‖α‖∞ for all α ∈ Hn

b (Y ).
In particular, if f is a homotopy equivalence, then f∗ is an isometric isomorphism.

Proof. This is analogous to Proposition 1.3 and Corollary 1.4. �

Its relation to bounded group cohomology is given by Gromov’s mapping theorem.

Theorem 2.80 (Gromov’s mapping theorem). Let X be a CW complex with π1(X) = G. Then the
natural map K(G, 1)→ X induces an isometric isomorphism Hn

b (X) ∼= Hn
b (G).

This is astonishing as the bounded cohomology only depends on π1(X). When X itself is a
K(G, 1), which up to homotopy we may assume to be the simplicial complex BG that we built
explicitly, the theorem asserts that the bounded cohomology via singular simplices on BG agrees
with the bounded cohomology via simplicial simplices on BG.

One way to prove this is to establish a theory of strongly injective resolutions along the lines of
homological algebra, introduced by Ivanov. We will focus more on applications and skip this. See
[Fri17] or [Iva17] for more details.

Combining this with Theorem 2.77 we have

Theorem 2.81 (Gromov). For any f : X → Y such that f∗ : π1(X) → π1(Y ) is surjective with
amenable kernel, the induced map f∗ : Hn

b (Y )→ Hn
b (X) is an isometric isomorphism.

As in the bounded group cohomology, we have a comparison map c : Hn
b (X;R)→ Hn(X;R).

3. More on Gromov’s simplicial norm

Further properties of the simplicial norm can be deduced by a duality principle between homology
and bounded cohomology.

3.1. Duality. There is duality principle relating the norm on bounded cohomology to the simplicial
norm. Note that the usual pairing Hn(X;R) × Hn(X;R) → R gives a way to pair bounded
cohomology classes with homology classes, by composing with the comparison map. The usual
`1-`∞ duality implies that, for any singular chain s ∈ Cn(X), we have

|s|1 = sup
f∈Cn

b (X)

〈f, s〉
|f |∞

= sup
f∈Cn

b (X),|f |∞≤1
〈f, s〉.

Recall that ‖σ‖1 = inf [s]=σ |s|1, which can be thought of as the induced norm on the quotient by
Im ∂. The dual space of a quotient consists of the dual functions that vanish on the subspace, in
our context those f with δf = 0, i.e. cocycles. This means, for any σ ∈ Hn(X;R) we have

‖σ‖1 = sup
f∈Cn

b (X),δf=0,|f |∞≤1
〈f, σ〉.

The pairing does not change if we replace f by another cocycle in the same class, so we get

‖σ‖1 = sup
α∈Hn

b (X),‖α‖∞≤1
〈α, σ〉.

This is called the duality principle.

Proposition 3.1 (Duality principle). For any σ ∈ Hn(X;R), we have

‖σ‖1 = sup
α∈Hn

b (X),‖α‖∞≤1
〈α, σ〉.

Corollary 3.2. If Hn
b (X) = 0, then ‖ · ‖1 vanishes on Hn(X).

Example 3.3. We showed that H1
b (X;R) = 0, so ‖·‖1 vanishes on H1(X;R) by the duality principle,

which we proved directly in Corollary 1.16.
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Recall that we showed ‖M‖1 = 0 for M = Sn, Tn by constructing self maps with nonzero degree.
In both examples, the fundamental groups are amenable.

Proposition 3.4. If π1(M) is amenable, then the simplicial volume ‖M‖1 = 0.

Proof. We know amenable groups have trivial bounded cohomology by Theorem 2.76, so by Gro-
mov’s mapping theorem 2.80 we know Hn

b (M) = 0 for all n. In particular, taking n = dimM , we
obtain ‖M‖1 = 0 by Corollary 3.2. �

In particular, every simply connected closed manifold has vanishing simplicial volume, which is
not obvious from the definition.

Example 3.5. For a closed hyperbolic n-manifold M , the volume form ω represents a cohomology
class in Hn(M). The volume form itself is not a bounded cocycle, since there are large fat simplices
with arbitrarily large volume. However, the composition ω ◦ str is bounded. This gives rise to a
bounded cohomology class α ∈ Hn

b (M) so that its image under the comparison map is [ω]. Moreover,
‖α‖∞ ≤ ‖ω◦str‖∞ = sup vol(∆n) = vn. Hence 1

vn
‖α‖∞ has norm no more than 1. So by the duality

principle,

‖M‖1 ≥
1

vn
〈α, [M ]〉 =

1

vn
〈ω, [M ]〉 =

vol(M)

vn
.

This essential the same straightening argument we used to show ‖M‖1 ≥ vol(M)
vn

, written in terms
of the duality principle. Since the equality holds by the Proportionality Theorem, we conclude that
the bound ‖α‖∞ ≤ vn is sharp, i.e. ‖α‖∞ = vn.

3.2. Additivity. The goal of this section is to show Gromov’s additivity theorem

Theorem 3.6 (Gromov). For n ≥ 3, let M be the connected sum of closed orientable n-manifolds
M1 and M2. Then ‖M‖1 = ‖M1‖1 + ‖M2‖1.

Here the assumption on the dimension n ≥ 3 is important. When n = 2, if M1 and M2 have
genus g1 ≥ 1 and g2 ≥ 1 respectively, then M has genus g1 + g2. Then by Theorem 1.20, we know
‖M‖1 = −2χ(M) = 4(g1 + g2 − 1), while ‖M1‖1 + ‖M2‖1 = −2χ(M1)− 2χ(M2) = 4(g1 + g2 − 2).
So in this case, we have ‖M‖1 > ‖M1‖1 + ‖M2‖1.

We will deduce Theorem 3.6 from a more general result [Fri17, Theorem 7.6]. Let n ≥ 2, and let
{(Mi, ∂Mi)}i∈I be a finite collection of orientable compact connected n-manifolds with boundary.
We say (M,∂M) is obtained by gluing {(Mi, ∂Mi)}i∈I together, if there are orientation reversing
homeomorphisms fj : S+

j → S−j of (n − 1)-manifolds {S±j }j∈J , such that each S±j is a component
of some ∂Mi with induced orientation, and each component of Mi is identified with at most one
S±j . Then ∂M is necessarily the union of those boundary components of Mi’s that never appear as
some S±j .

We say the gluing is compatible if fj∗K+
j = K−j , fj∗ is the induced map on π1 and K±j is the

kernel of the inclusion map π1(S±j )→ π1(Mi) if S±j is a component of ∂Mi. Note that if boundary
inclusion S±j →Mi is π1-injective, then the gluing is compatible.

Theorem 3.7. Let (M,∂M) be obtained by gluing {(Mi, ∂Mi)}i∈I together. If each component of
∂Mi has amenable fundamental group, then

‖M,∂M‖1 ≤
∑
i∈I
‖Mi, ∂Mi‖.

If in addition the gluing is compatible, then

‖M,∂M‖1 =
∑
i∈I
‖Mi, ∂Mi‖.
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Here are some consequences and examples.
When the boundary components are simply connected, then the assumptions of the theorem

(amenability and compatibility) hold automatically.

Corollary 3.8. For n ≥ 3, if (N, ∂N) is obtained from a closed orientable n-manifold M by
removing an open n-ball. Then ‖N, ∂N‖1 = ‖M‖1.

Proof. In this case, we have ∂N ∼= Sn−1, and M is obtained by gluing (N, ∂N) with (Bn, Sn−1).
Since π1(∂N) = π1(Sn−1) = 1 as n ≥ 3, the gluing is compatible. So by Theorem 3.7,

‖N, ∂N‖1 = ‖M‖1 − ‖Bn, Sn−1‖1 = ‖M‖1.

The fact that ‖Bn, Sn−1‖1 = 0 can be obtained by a self map with degree greater than one, or by
the equality above for the case M = Sn. �

This fails when n = 2 as ‖S‖1 = −2χ−(S) for all surfaces possibly with boundary.
Then we can deduce Theorem 3.6.

Proof of Theorem 3.6. Let (Ni, ∂Ni) be Mi with an open n-ball removed, i = 1, 2. Then M is
obtained by gluing (Ni, ∂Ni) together. As Ni

∼= Sn−1, which is simply connected, the gluing is
compatible. Thus ‖M‖1 = ‖N1‖1 + ‖N2‖1 = ‖M1‖1 + ‖M2‖1 by the corollary above. �

Example 3.9.
(1) S2 can be obtained from gluing two disks along the boundary. The boundary circle has

fundamental group Z, which is amenable. Although the boundary is not π1-injective, the
kernel for both copies are the entire Z = π1(S1), so the gluing is compatible. It follows that
‖S2‖1 = 2‖D2, S1‖1. Actually we know that both quantities are zero.

(2) A genus g surface S can be obtained by gluing two surfaces S1 and S2 both with a single
circle boundary, where Si has genus gi. When g1, g2 > 0, the boundary is π1-injective, so
‖S‖1 = ‖S1‖1 +‖S2‖1, which is compatible with the Euler characteristic computation. When
g2 = 0 and g1 = g, the gluing is not compatible, and we get a strict inequality ‖S‖1 < ‖S1‖1
as −χ(S1) > −χ(S).

Here is another example, which shows that the equality in Theorem 3.7 fails without compatibility.

Example 3.10. Let K be a knot in S3. Let (M,∂M) be the knot complement, i.e. S3 with an open
tubular neighborhood of K removed. A Dehn filling of (M,∂M) is a closed manifold N obtained by
gluing (M,∂M) with a solid torus (S1 ×D2, T 2). The topology of N depends on the identification
between ∂M and T 2, specifically which element of π1(∂M) is identified with ∂D2.

This gluing is not compatible when K is nontrivial, as π1(∂M) injects π1(M) while the kernel of
π1(T 2)→ π1(S1 ×D2) is Z. As Z2 = π1(T 2) is amenable, we only get an inequality from Theorem
3.7:

‖N‖1 ≤ ‖M,∂M‖1 + ‖S1 ×D2, T 2‖1 = ‖M,∂M‖1.
Here ‖S1×D2, T 2‖1 = 0 can be seen by doubling (which is a compatible gluing) and ‖S1×S2‖1 = 0
(for having an S1 factor). Alternatively, there is a self map of degree greater than one.

Suppose K is a hyperbolic knot (i.e. the interior of M has a hyperbolic structure of finite volume),
then a theorem of Thurston shows that for all but finitely many Dehn fillings, N has a hyperbolic
structure. Moreover, the hyperbolic volumes of different Dehn fillings N converge nontrivially to the
volume of M . By the Proportionality Theorem 1.38, we have ‖N‖1 = vol(N)/v3, which is not a
constant as we vary the Dehn fillings. So we must have a strict inequality ‖N‖1 < ‖M,∂M‖1 (for
most Dehn fillings N). In the limit we observe vol(M)/v3 ≤ ‖M,∂M‖1. Actually this is an equality
by smearing in the thick part of M to produce an efficient representative of the relative fundamental
class; see [Thu, Lemma 6.5.4].
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A compatible gluing with non-amenable fundamental groups on the boundaries also violates the
theorem.

Example 3.11. Let S be a surface of genus at least 2. Let Mϕ be the mapping torus associated to
a mapping class ϕ. When ϕ is pseudo-Anosov, Mϕ is hyperbolic, so ‖Mϕ‖1 = vol(Mϕ)/v3. It is
known that vol(Mϕ) is comparable to the translation length of ϕ with respect to the Weil-Peterson
metric on the Teichmüller space. In particular vol(Mϕn)→∞ as n→∞.

On the other hand, Mϕ is obtained from S × [0, 1] by a compatible gluing. However, ‖Mϕn‖1 >
‖S × [0, 1]‖1 for large n, violating the inequality in Theorem 3.7, and the reason is that π1(S) is
non-amenable as it has free subgroups.

Example 3.12. For a closed 3-manifold M , its simplicial volume can be computed from its prime
factors in the prime decomposition. WhenM is prime, it can be decomposed along π1-injective tori so
that each component admits one of the eight geometries, by the geometrization theorem. Five out of
the eight geometry only allows amenable fundamental groups. Among the remaining three, manifolds
with H2 × R or P̃SL2 are Seifert fibered, and the S1 fiber (which has amenable fundamental group)
forces the simplicial volume to vanish. So only the hyperbolic geometry contributes nontrivially to
the simplicial volume of M .

Proposition 3.13. If a closed 3-manifold M admits a complete metric with negative sectional
curvature, then it admits a complete hyperbolic metric.

Proof. Negative curvature implies that M is aspherical and the fundamental group π1(M) is δ-
hyperbolic. In particular, π1(M) cannot have any Z2 subgroup. It follows that M is prime and has
trivial JSJ decomposition. So itself is geometric. Negative curvature implies that ‖M‖1 > 0, hence
M can only admit the hyperbolic geometry. �

From now on, in the setup of Theorem 3.7, we assume all components of ∂Mi to have amenable
π1. We will first prove the inequality in Theorem 3.7. Naively, we would like to piece together almost
optimal cycles representing fundamental classes [Mi, ∂Mi]. The boundary of the cycles restricted
on S+

j and S−j represent the fundamental classes respectively, which cancel out after gluing as
homology classes, but not necessarily as cycles. The hope is that this can fixed as S±j has amenable
fundamental group and thus zero simplicial volume. To carry this out, we will use the duality
principle in the relative context, between Hn(X,Y ) and Hn

b (X,Y ), for a subspace Y ⊂ X. A key
ingredient is the following theorem:

Theorem 3.14. Let (X,Y ) be a pair of countable CW complexes. Suppose each component of
Y has amenable fundamental group. Then the natural map Hn

b (X,Y ) → Hn
b (X) is an isometric

isomorphism for all n ≥ 2.

Note that cochains in Cnb (X,Y ) are cochains in X that vanish on Y . So intuitively, for any
α ∈ Hn

b (X) one can find a cocycle that vanishes on Y using amenability of π1(Y ) at an arbitrarily
small cost to the norm. See [Fri17, Theorem 5.14] for details.

This allows us to treat any α ∈ Hn
b (M,∂M) as a class in Hn(M, S ∪ ∂M), where S = ∪Sj and

Sj is the image of S±j in M . Then we can pull back α to each Mi to obtain αi ∈ Hn(Mi, ∂Mi).

Lemma 3.15. For any α ∈ Hn
b (M,∂M), with the notation above, we have

〈α, [M,∂M ]〉 =
∑
i∈I
〈αi, [Mi, ∂Mi]〉.

Proof. Let ci be a relative cycle in Cn(Mi, ∂Mi) representing [Mi, ∂Mi]. Identify it with its image
in M . Then ∂ci on each component of ∂Mi represents the fundamental class. Then for the chain
c =

∑
ci ∈ Cn(M), the part of ∂c on each Sj is the difference of two fundamental cycles since
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fj : S+
j → S−j is orientation reversing, hence it can be written as ∂c′j for some chain c′j ∈ Cn(Sj).

It follows that c− c′ ∈ Cn(M,∂M) represents [M,∂M ], where c′ =
∑
c′j .

Representing α as a cocycle vanishing on all Sj ’s, we have 〈α, c′〉 = 0, so

〈α, [M,∂M ]〉 = 〈α, c− c′〉 = 〈α, c〉 =
∑
i∈I
〈αi, ci〉 =

∑
i∈I
〈αi, [Mi, ∂Mi]〉.

�

Proof of the inequality in Theorem 3.7. By the duality principle, we have

‖M,∂M‖1 = sup
α∈Hn

b (M,∂M),‖α‖∞≤1
〈α, [M,∂M ]〉.

Given any such α, in the notation above, each αi is obtained by pulling back α, so ‖αi‖∞ ≤ ‖α‖∞ ≤
1, so ‖Mi, ∂Mi‖1 ≥ 〈αi, [Mi, ∂Mi]〉 by the duality principle on Mi. Hence the lemma above, we
have ∑

i∈I
‖Mi, ∂Mi‖1 ≥

∑
i∈I
〈αi, [Mi, ∂Mi]〉 = 〈α, [M,∂M ]〉.

As this holds for all α ∈ Hn
b (M,∂M) with ‖α‖∞ ≤ 1, we deduce that

‖M,∂M‖1 ≤
∑
i∈I
‖Mi, ∂Mi‖1

as desired. �

The equality in Theorem 3.7 is obtained by a partial converse to Theorem 3.14 for compatible
gluing:

Theorem 3.16. Suppose M is obtained by compatible gluing as in Theorem 3.7. Given ϕi ∈
Hn
b (Mi, ∂Mi) for all i ∈ I, for any ε > 0, there is α ∈ Hn

b (M,∂M) such that αi = ϕi for all i and

‖α‖∞ ≤ max
i∈I
{‖ϕi‖∞}+ ε.

Proof. We give a sketch of the proof; Consult [Fri17, Section 9.2] for more details. Let G =

π1(M). Then cochains in Hn
b (M) correspond to G-invariant cochains on the universal cover M̃ .

The manifold M has the structure of a graph of spaces, where vertices correspond to interiors of
Mi’s (called vertex spaces) and each edge corresponds to a gluing along some S±j . Denote by Γ the
corresponding finite graph.

The universal cover M̃ has an induced structure of a tree of spaces, where each vertex represents
a component of p−1(Mv) for a vertex space Mv, where p : M̃ → M is the covering map. This
gives a contraction from M̃ to a tree T , which admits a G action with quotient being the graph
Γ. Compatible gluing ensures that each inclusion of Mv in M is π1-injective by van Kampen. This
implies that the restriction of p to each vertex space M̃v in M̃ is a universal covering map M̃v →Mv̄,
where v̄ is the image of v under the quotient map T → Γ.

Each ϕi can be represented by a cocycle fi on M̃i that is π1(Mi)-invariant such that |fi|∞ <

‖ϕ‖i + ε. So we have cocycles fv defined on each vertex space M̃v of M̃ . The key is to define an
extension f of these cocycles to M̃ so that |f |∞ ≤ maxv{|fv|∞} = maxi∈I{|fi|∞}.

For each singular simplex ∆ in M̃ , we define f(∆) as fv(∆v) if ∆ has a “barycenter” v and zero it
has not barycenter, where ∆v is supported on the closure of M̃v as a “projection” of ∆. We say v is
a barycenter of ∆ if for every pair of vertices xi, xj of ∆, all paths connecting them in M̃ intersects
M̃v; One can also view this by first projecting to the tree T . The barycenter may not exist but is
unique if it exists. The projection ∆v is chosen rather arbitrarily, with the property that its vertex
x′i agrees with the corresponding vertex xi of ∆ if xi ∈ Mv, and lies on the unique boundary of
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M̃v separating xi from Mv otherwise. The definition of f guarantees the bound on its norm. The
amenability of the boundary components is used to resolve problems on the boundaries of vertex
spaces in this construction. �

Now we complete the proof of Theorem 3.7.

Proof of the equality in Theorem 3.7. For any ε > 0, by the duality principle, there is ϕi ∈ Hn
b (Mi, ∂Mi)

with ‖ϕi‖∞ ≤ 1 such that 〈ϕi, [Mi, ∂Mi]〉 > ‖Mi, ∂Mi‖1 − ε.
Let α be as in the theorem above for the same ε. Then ‖α‖∞ ≤ 1 + ε

(1+ε)‖M,∂M‖1 ≥ 〈α, [M,∂M ]〉 =
∑
i∈I
〈αi, [Mi, ∂Mi]〉 =

∑
i∈I
〈ϕi, [Mi, ∂Mi]〉 =

∑
i∈I
‖Mi, ∂Mi‖1−ε|I|.

Letting ε→ 0 gives the inequality in the other direction. �

3.3. Volume of a product. Geometrically, the productM×N of two closed Riemannian manifolds
Mm, Nn with the product metric has vol(M ×N) = vol(M) · vol(N). For the simplicial volume, in
general it is only known that ‖M ×N‖1 is comparable to ‖M‖1 · ‖N‖1 by some universal constants
depending on the dimensions m,n.

Theorem 3.17 (Gromov). Let M,N be closed manifolds of dimension m,n. Then

‖M‖1 · ‖N‖1 ≤ ‖M ×N‖1 ≤
(
m+ n
m

)
‖M‖1 · ‖N‖1.

Proof. The product of simplices ∆m×∆n can be triangulated with
(
m+ n
n

)
simplices of dimension

m+n, where simplices correspond to (geodesic) paths from the lower left corner to the upper right
corner of a grid made of m × n squares (so the vertices of a path corresponds to vertices of the
simplex). This proves the upper bound.

For the lower bound, let αM and αN be cohomology classes of norm at most 1 in Hm
b (M) and

Hn
b (N) respectively so that 〈αM ,M〉 > ‖M‖1 − ε1 ≥ − and 〈αN , N〉 > ‖N‖1 − ε2 ≥ 0. The cup

product α = αM ∪ αN satisfies ‖α‖∞ ≤ ‖αM‖∞ · ‖αN‖∞ ≤ 1, and

〈α, [M ×N ]〉 = 〈αM , [M ]〉 · 〈αN , [N ]〉 ≥ (‖M1‖ − ε1)(‖N‖1 − ε2).

Hence by the duality principle, we have ‖M ×N‖1 ≥ (‖M1‖ − ε1)(‖N‖1 − ε2), where ε1, ε2 ≥ 0 can
be arbitrarily small (and actually can be chosen to be zero). This proves the lower bound. �

Remark 3.18. The same holds for two arbitrary homology classes instead of fundamental classes.
There are various improvements of the bounds. For instance, if m = n = 2 and one of the two
classes is the fundamental class of a closed surface, then there is an equality [HL20, Theorem E]:

‖α× β‖1 =
3

2
‖α‖1 · ‖β‖1.

An immediate consequence generalizes our earlier observation that ‖Sn ×M‖1 = 0 (or with Sn
replaced by any manifold having a self map of degree greater than one).

Corollary 3.19. ‖M ×N‖1 = 0 if ‖M‖1 = 0.

In the special case where π1(M) is amenable, we can view M ×N as a trivial M -bundle over N
where the fibers are amenable. Such genuine bundles in the world of manifolds always have zero
volume.

Theorem 3.20. Let E be a fiber bundle over base B, where the fiber F has π1(F ) amenable. Suppose
F,E,B are orientable connected closed manifolds and dimF ≥ 1. Then ‖E‖1 = 0.
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Proof. From the long exact sequence of homotopy groups for a fibration, we extract the following
exact sequence:

π1F → π1E
p→→ π1B → 1.

As π1(F ) is amenable, Theorem 2.77 and Theorem 2.80 imply thatHn
b (B) ∼= Hn

b (π1B)
p∗→ Hn

b (π1E) ∼=
Hn
b (E) is an isometric isomorphism. Let n = dimE. However,

〈E, p∗(α)〉 = 〈p∗([E]), α〉 = 0

for all α ∈ Hn
b (B) since the pairing factors through the comparison map Hn

b (B) → Hn(B), which
is a trivial space as dimB = dimE − dimF < dimE = n as dimF ≥ 1. Hence ‖E‖1 = 0 by the
duality principle. �

This echos with our earlier comment that Seifert fibered 3-manifolds (with P̃SL2 or H2 × R
geometry) have zero simplicial volume so that only hyperbolic pieces contribute nontrivially to the
volume of a closed 3-manifold. Although Seifert fibered spaces are not strictly speaking an S1 fiber
bundle over the base surface, but it can be viewed as an S1 bundle over an orbifold, and the exact
sequence above holds with π1(B) interpreted as the orbifold fundamental group.

4. Groups acting on Gromov-hyperbolic spaces

The goal of this section is two fold. One is a proof of Mostow’s rigidity as an application of
Gromov’s proportionality, and the other is Epstein–Fujiwara’s construction of quasimorphisms for
groups acting nicely on negatively curved spaces3, which generalizes Brooks’ counting quasimor-
phism and applies to many groups of interest in geometric group theory.

Both require some knowledge of coarse geometry of metric spaces, so we will give a brief introduc-
tion, focusing on basics of quasi-isometries, Gromov-hyperbolic spaces, and the Gromov boundary.
A good reference for this part is [BH99].

4.1. Quasi-isometries.

Definition 4.1. Given constants L > 0, C ≥ 0, for metric spaces X and Y , a map f : X → Y is
an (L,C)-quasi-isometric embedding (or (L,C)-QI embedding for short) if f is L-bi-Lipschitz up to
a bounded error C, i.e.

1

L
dX(x, y)− C ≤ dY (f(x), f(y)) ≤ LdX(x, y) + C,∀x, y ∈ X.

We simply say f is a quasi-isometric embedding (QI-embedding) if f is (L,C)-QI embedding for
some L and C. If in addition, there is a QI-embedding g : Y → X such that f ◦ g and g ◦ f are in
bounded distance to idX and idY respectively, then we say f is a quasi-isometry with quasi-inverse
g.

A QI-embedding f is QI if and only if it is quasi-onto in the sense that Y is contained in the
r-neighborhood of the image of f for some r > 0. A quasi-inverse can be chosen by taking each
point to a point in the image of f within distance r.

Example 4.2. Given a group G with a finite generating set S, the word length with respect to S is

|g|S := inf{n | g = s1 · · · sn, si ∈ S±}.

Then we get an associated word-metric d(g, h) := |g−1h|. This is indeed a metric on G as the
symmetry follows from the fact that |g|S = |g−1|S and the triangle inequality follows from |gh|S ≤
|g|S+|h|S. The word-metric is left-invariant in the sense that d(kg, kh) = d(g, h) for all k, g, h,∈ G.

3We skipped this part for time considerations
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Let S′ be another finite generating set of G. Distinguish the two word-metrics by denoting them
as d and d′ respectively. The identity map id : (G, d) → (G, d′) is a quasi-isometry. Indeed,
|g|S′ ≤ L1|g|S for L1 = maxs∈S |s|S′, so

d′(g, h) = |g−1h|S′ ≤ L1|g−1h|S ≤ L1d(g, h).

Similarly |g|S ≤ L2|g|S′ for L2 = maxs′∈S′ |s′|S, and
d(g, h) =≤ L2d

′(g, h).

Hence id is an (L, 0)-QI embedding for L = max{L1, L2}. Any bijective QI embedding is a quasi-
isometry.

Therefore, a finitely generated group has a well-defined coarse geometry.

Example 4.3. Z is quasi-isometric to R equipped with the Euclidean metric, via the natural in-
clusion. A quasi-inverse is a contraction g taking each interval [n − 1/2, n + 1/2) to n for all
n ∈ Z.

Example 4.4. Given a closed Riemannian manifold M , let M̃ be its universal cover with the
pullback metric. Then G = π1(M) acts on M̃ by isometries. For any chosen base point p ∈ M̃ , the
orbit map f : G → M̃ given by f(g) = gp is a quasi-isometry, shown by the Švarc–Milnor lemma
below. Note that the fundamental group is purely topological but the Riemannian metric on M is
an additional structure. The coarse geometry of the fundamental group determines what kind of
metric a topological manifold M can carry. For instance, it is known that if G = π1(M) is virtually
nilpotent, then M cannot have a metric with negative sectional curvature by considering the growth
of the size of balls of increasing radius r in both G and M̃ .

Lemma 4.5 (Švarc–Milnor Lemma). If a group G acts properly discontinuously on a proper geodesic
metric space X by isometries with compact quotient, then G is finitely generated and any orbit map
is a quasi-isometry.

Here a metric space X is proper if every bounded closed subset (e.g. a closed ball) is compact.
It is geodesic if any two points x, y ∈ X is connected by a geodesic γ so that the length of γ is
d(x, y). The length of a curve γ : [0, t] → X is the supremum of

∑n
i=0 d(γ(ti−1), γ(ti)) over all

increasing sequences {ti}ni=0 with t0 = 0 and tn = t for all n ≥ 1. It is a (unit speed global) geodesic
if d(γ(s), γ(s′)) = |s− s′| for all s, s′ ∈ [0, t].

The finite generation part of the lemma can be deduced from the following more general fact.

Lemma 4.6. Suppose G acts on a space X by homeomorphisms such that there is an open subset
U ⊂ X so that GU = X. Let S = {g | gU ∩ U 6= ∅}. If X is connected, then S generates G.

Proof. Let H be the subgroup generated by S. Let V = HU and V ′ = (G \ H)U , both of which
are open subsets of X and V ∪ V ′ = GU = X. Our goal is to show G = H, i.e. V ′ = ∅. Suppose
not, since X is connected, we must have V ∩ V ′ 6= ∅. That is, there is h ∈ H and g ∈ G \H such
that hU ∩ gU 6= ∅. Then U ∩ h−1gU 6= ∅, so by definition h−1g ∈ S ⊂ H, contradicting g /∈ H. �

Proof of Lemma 4.5. Let p ∈ X be any base point. Since X/G is compact, there is a closed ball
B = B(p, r) of radius r > 0 such that GB = X. As X is proper, B is compact, and S = {g |
B ∩ gB 6= ∅} is finite since the action is properly discontinuous. Hence G is finitely generated by
Lemma 4.6. The next step is to compare the word metric dS to the metric in X restricted to the
orbit Gp.

On the one hand, for any s ∈ S, there is q ∈ B ∩ sB, so d(p, sp) ≤ d(p, q) + d(q, sp) ≤ 2r. It
follows that d(p, gp) ≤ 2r|g|S for all g ∈ G, and d(gp, hp) ≤ 2rdS(g, h).

Everything above works for all r large enough. So in the beginning we may choose r so that
GB(p, r/3) = X. This helps us obtain the comparison in the other direction. For any g ∈ G, let
γ : [0, d] → X be a geodesic with γ(0) = p and γ(d) = gp, where d = d(p, gp). Choose a partition
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of [0, d] with break points 0 = t0 < t1 < · · · < tn = gp so that |ti − ti−1| ≤ r/3 for all 1 ≤ i ≤ n,
where n ≤ 3d/r + 1. For each 0 ≤ i ≤ n, choose gi so that γ(ti) ∈ giB(p, r/3), where g0 = id and
gn = g. Then

d(gip, gi−1p) ≤ d(gip, γ(ti)) + d(γ(ti), γ(ti−1)) + d(γ(ti−1), gi−1p) ≤ r,
so B(gip, r) ∩B(gi−1p, r) 6= ∅. That is, dS(gi, gi−1) ≤ 1 for all i. Hence dS(id, g) ≤ n ≤ 3d/r + 1 =
3
rd(p, gp) + 1. As G acts by isometry, we have

dS(g, h) ≤ 3

r
d(gp, hp) + 1

for all g, h ∈ G.
Combining the two directions, we see that (G, dS)→ (X, d) is an (2r, r/3)-QI embedding. As X

is contained in the r neighborhood of image, we know this is a quasi isometry. �

4.2. Gromov-hyperbolic spaces and their boundary. Gromov-hyperbolic spaces are coarse-
geometric generalizations of hyperbolic spaces that are preserved by quasi-isometries. Throughout
this section, all metric spaces are assumed to be proper and geodesic.

Definition 4.7. Given δ ≥ 0, a proper geodesic metric space is δ-hyperbolic if every geodesic
triangle is δ-thin: each side is contained in the union of the δ-neighborhoods of the other two sides.
We simply say X is Gromov-hyperbolic if it is δ-hyperbolic for some δ.

A metric space of finite diameter d is δ-hyperbolic, but it is not of interest.

Example 4.8. Every simplicial tree (with the simplicial metric) is 0-hyperbolic since every geodesic
triangle is a tripod, so that each side is contained in the union of the other two.

Example 4.9. The hyperbolic space Hn is δ-hyperbolic for a uniform δ. It comes down to check an
ideal hyperbolic triangle is δ-thin, which can be done by an explicit calculation for a nicely chosen
one, say in the upper-half plane model.

Example 4.10. If a complete Riemannian manifold X is simply connected and its sectional curva-
ture is no more than κ < 0, then X is δ-hyperbolic for some δ = δ(κ).

Definition 4.11. A group G generated by a finite set S is δ-hyperbolic if its Cayley graph with
respect to S is δ-hyperbolic.

Example 4.12. Any free group is 0-hyperbolic with respect to a free basis.
If n ≥ 2, then Zn (with respect to the standard basis) is not δ-hyperbolic for any δ.

Changing the finite generating set S would change the metric on G by a quasi-isometry, which
always take a δ-hyperbolic space to a δ′-hyperbolic space for a suitable δ′. The key is to understand
the image of geodesics under a QI-embedding.

Definition 4.13. For an interval I, a curve c : I → X is a (L,C)-quasi-geodesic segment (resp.
ray or line) if c is an (L,C)-QI embedding, where I = [a, b] (resp. I = [0,∞) or I = R) is equipped
with the Euclidean metric.

We summarize two key facts about quasi-geodesics in δ-hyperbolic spaces.

Lemma 4.14 (Morse Lemma). For every pair (L,C) and δ, there is a universal constant R =
R(δ, L,C) ≥ 0 such that every (L,C)-quasi-geodesic segment with endpoints p, q in a δ-hyperbolic
space X has Hausdorff distance at most R to any geodesic segment connecting p, q.

Lemma 4.15 (Local-to-global Principle). For every pair (L,C) and δ, there is a universal constant
K = K(δ, L,C) such that if a curve c : R → X in a δ-hyperbolic space whose restriction to each
interval of length K is an (L,C)-quasi-geodesic, then c is a (global) (2L, 2C)-quasi-geodesic.
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We will skip the proofs of these facts but look into a few important consequences.

Theorem 4.16. If X ′ → X is an (L,C)-quasi-isometric embedding, where X is δ-hyperbolic, then
X ′ is δ′-hyperbolic, where δ′ only depends on L,C, δ. In particular, Gromov-hyperbolicity is QI
invariant.

Proof. Let R be as in the Morse lemma, and we show δ′ = L(δ+2R+C) works. Let ∆′ be a geodesic
triangle in X ′ with sides a′, b′, c′. Without loss of generality, we show that c′ ⊂ Nδ′(a

′) ∪ Nδ′(b
′).

Let a = fa′, b = fb′, and c = fc′, which are (L,C)-geodesics. By the Morse lemma, there are
geodesic segments α, β, γ in X with Hausdorff distance at most R to a, b, c respectively. Then

c ⊂ NR(γ) ⊂ NR+δ(α) ∪NR+δ(β) ⊂ N2R+δ(a) ∪N2R+δ(b).

That is, for each c(x), without loss of generality, we may assume that there is a(y) so that
d(c(x), a(y)) ≤ 2R+ δ. Since f is (L,C) QI embedding, we have

d(c′(x), a′(y))

L
− C ≤ d(fc′(x), fa′(y)) = d(c(x), a(y)) ≤ 2R+ δ.

So d(c′(x), a′(y)) ≤ L(2R+ δ + C) = δ′ as desired. �

Corollary 4.17. Whether a group is Gromov-hyperbolic does not depend on the choice of the finite
generating set.

Example 4.18. If G = π1(M) for a closed negatively curved manifold M , then G is δ-hyperbolic
for some δ.

Lemma 4.19. If γ : [0,∞) → X is an (L,C)-quasi-geodesic ray with starting point p in a δ-
hyperbolic space X, then there is a geodesic ray starting at p within Hausdorff distance R from the
Morse lemma.

Proof. For each n ∈ Z+, let γn = γ|[0,n] and cn be a geodesic connecting γ(0) and γ(n). By the
Morse lemma, cn is contained in the R-neighborhood of γn, where R does not depend on n. Fixing
each m ∈ Z+, we claim that Arzelà–Ascoli applies to the sequence of geodesic segments {cn|[0,m]}
for n ≥ m. The sequence is equi-continuous since they are (unit speed) geodesics. They lie in the
ball of radius of m around p, which is compact.

Hence Arzelà–Ascoli implies that (any subsequence of) {cn|[0,m]} has a subsequence that converges
uniformly to a map `m : [0,m] → X. Here `m must be a geodesic as the limit of geodesics, and
it lies in the R-neighborhood of γ since each cn does. This can be done inductively, so that the
subsequence at stage m + 1 is a subsequence of the subsequence at stage m. It follows that `m
is the restriction of `m′ to [0,m] for all m′ > m, hence this uniquely determines a geodesic ray
` : [0,∞)→ X. It lies in the R-neighborhood of γ since each `m does.

On the other hand, any fixed γ(t) lies in the R-neighborhood of cn for all n > t. Fix m much
larger than t, for any ε > 0, there is some n such that cn([0,m]) lies in the ε-neighborhood of
`([0,m]). Then γ(t) lies in the (R+ ε)-neighborhood of `([0,m]) if m is chosen large enough so that
d(γ(t), cn(s)) > R for all s > m. Letting ε→ 0, we see that γ lies in the R-neighborhood of `.

Hence γ and ` has Hausdorff distance at most R. �

Corollary 4.20. Any bi-infinite quasi-geodesic line in X has finite Hausdorff distance to a bi-infinite
geodesic.

Proof. Think of the quasi-geodesic line as two quasi-geodesic rays γ1, γ2 starting at the same point
p. By the lemma above, there are geodesic rays `1, `2 starting at p close to γ1 and γ2 respectively.
Take geodesics cn connecting `1(n) to `2(n), and take their weak limits using Arzelà–Ascoli as above
we find a bi-infinite geodesic close to the union `1∪ `2 and hence close to the starting quasi-geodesic
γ. �
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Definition 4.21 (Gromov boundary). For a δ-hyperbolic space X, define its (Gromov) boundary
(or ideal boundary) ∂X as the equivalence class of quasi-geodesic rays, where two quasi-geodesic
rays are equivalent if and only if they have finite Hausdorff distance to each other.

It does not affect the definition if we restrict our attention to quasi-geodesic rays starting at a
chosen base point. This can be seen by an Arzelà–Ascoli argument similar to the proofs above. We
can further restrict to genuine geodesic rays starting at a base point by Lemma 4.19.

The topology on ∂X is given by the following convergence: {yn} converges y in ∂X if there are
geodesic rays cn ∈ yn and c ∈ y so that any subsequence of cn has a subsequence that converges
uniformly on compact sets to c.

Example 4.22. The Gromov boundary of the hyperbolic space Hn is the usual ideal boundary
∂Hn ∼= Sn−1.

Theorem 4.23 (Boundary map). If f : X → Y is a QI-embedding of Gromov-hyperbolic spaces,
then f induces a natural continuous injective map ∂f : ∂X → ∂Y . If f is QI, then ∂f is a
homeomorphism.

Proof. QI sends quasi-geodesic rays to quasi-geodesic rays, and two sets with Hausdorff distance D
has distance at most LD + C for their image under f if f is (L,C)-QI. This defines the natural
map ∂f . If the image of two sets have Hausdorff distance D in Y then the two sets have Hausdorff
distance at most D(L + C), which proves injectivity. The map is natural in the sense that, if
g : Y → Z is also QI, then ∂(gf) = ∂g ◦ ∂f . Moreover, if two QIs are a bounded distance apart,
then they induce the same boundary map. Hence if f has a quasi-inverse g, then ∂f and ∂g are
inverses.

It remains to check the continuity of ∂f . It suffices to show that if cn : [0,∞) → X is a
sequence of geodesic rays converging on compact sets to a geodesic c in X, then the geodesic rays
c′n corresponding to the quasi-geodesics f ◦ cn constructed as in Lemma 4.19 has a subsequence
converging to a geodesic ray c′ uniformly on compact sets in Y , where dH(c′, f ◦ c) <∞ and dH is
the Hausdorff distance.

For each m ∈ Z+, as cn|[0,m] converges uniformly to c|[0,m], so they are in a ε-neighborhood of
c|[0,m] for n large, hence the images f(cn|[0,m]) has Hausdorff distance at most Lε+C to f(c|[0,m]).
Moreover, by construction, c′n|[0,m] has Hausdorff distance at most R to f(cn|[0,m]). It follows that
c′n|[0,m] is Lε + C + R away from f(c|[0,m]) and lies in a compact set independent of n. Hence we
can apply Arzelà–Ascoli to get a subsequence of c′n that converges to a geodesic ray c′ uniformly
on all compact sets, and c′|[0,m] is at most Lε+C +R away from f(c|[0,m]) for all m. Therefore, c′

represents the same class as f(c) as desired. �

4.3. Mostow’s rigidity. The goal of this section is to explain the Mostow rigidity and a proof
using the machinery of boundary maps of quasi-isometries and the simplicial volume.

Theorem 4.24 (Mostow Rigidity). Let M,N be closed oriented hyperbolic n-manifolds with n ≥ 3.
Suppose ϕ : M → N is a homotopy equivalence, then there is an isometry f : M → N homotopic
to ϕ.

Note that hyperbolic manifolds are K(π, 1) spaces, so isomorphism π1(M) → π1(N) is induced
by some homotopy equivalence, and thus by Mostow’s rigidity it is induced by an isometry.

Mostow’s rigidity shows that, in dimension n ≥ 3, a topological closed manifold has a unique
hyperbolic structure if exists. This is far from being true in dimension two, as there is a big (moduli)
space of hyperbolic metrics.

Corollary 4.25. In dimension n ≥ 3, any hyperbolic geometric quantity invariant under isometry
is a topological invariant among closed hyperbolic n-manifolds. Examples include the hyperbolic
volume, injectivity radius and the length spectrum (i.e. the set of lengths of closed geodesics).
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Historically, the topological invariance of the hyperbolic volume is a consequence of the Mostow
rigidity (for n ≥ 3, and follows from Gauss–Bonnet when n = 2), but we have shown this via the
invariance of the simplicial volume and Gromov’s proportionality, and we will use this to prove the
Mostow rigidity.

The proof has four steps, which we will carry out in more detail.
(1) We may assume ϕ to be smooth up to homotopy. Fix a lift ϕ̃ : Hn ∼= M̃ → Ñ ∼= Hn of ϕ to

the universal covers. Then ϕ̃ is a quasi-isometry and π1-equivariant.
(2) Using simplicial volume and Gromov’s proportionality to show that the boundary map

∂ϕ̃ : ∂Hn → ∂Hn must take the vertex set of a regular ideal n-simplex (which uniquely
attains the maximal volume) to another.

(3) Use π1-equivariance and the above property to show that there is a hyperbolic isometry
F : Hn → Hn such that ∂F = ∂ϕ̃.

(4) Conclude that F is π1-equivariant and thus induces an isometry f : M → N , which is
homotopic to ϕ as desired.

Only step (3) requires n ≥ 3.

4.3.1. Step (1). Up to homotopy, we assume ϕ to be smooth. Fix a based point p ∈ M and let
q = ϕ(p). Let ϕ∗ : π1(M) → π1(N) be the induced map, where we abbreviate π1(M,p) (resp.
π1(N, q)) as π1(M) (resp. π1(N)) and similarly in the sequel. ϕ∗ is an isomorphism since ϕ is a
homotopy equivalence.

Choose lifts p̃ ∈ M̃ and q̃ ∈ Ñ , which determines the actions of π1(M,p) and π1(N, q) on M̃ and
Ñ by deck transformations respectively. This also determines a lift ϕ̃ : Hn ∼= M̃ → Ñ ∼= Hn of ϕ
such that ϕ̃(p̃) = q̃.

The map ϕ̃ is π1-equivariant in the sense that the following diagram commutes for all γ ∈ π1(M).

Hn ϕ̃−−−−→ Hnyγ yϕ∗γ
Hn ϕ̃−−−−→ Hn

The compactness of M allows us to control the distortion of distance under ϕ̃.

Lemma 4.26. There is a constant L > 0 such that d(ϕ̃x, ϕ̃y) ≤ Lϕd(x, y) for all x, y ∈ Hn.

Proof. Since ϕ is C1, the operator norm ‖Dxϕ‖ of the tangent map Dxϕ : TxM → TϕxN with
respect to the Riemannian metrics depends continuously on x ∈ M . Let L = supx∈M ‖Dxϕ‖ > 0,
which is finite since M is compact.

Since ϕ̃ is the lift of ϕ, we see that the norm of Dxϕ̃ is also bounded by L for all x ∈ M̃ . Let
σ : [0, d]→ M̃ be a unit speed geodesic connecting x to y, where d = d(x, y). Then

length(ϕ̃σ) =

∫ d

0
‖ϕ̃∗

d

dt
‖ dt ≤

∫ d

0
L dt = Ld,

so d(ϕ̃x, ϕ̃y) ≤ length(ϕ̃σ) ≤ Ld(x, y). �

Lemma 4.27. ϕ̃ : Hn → Hn is a quasi-isometry, which is π1-equivariant.

Proof. The equivariance is already explained. Let ψ : N →M be a smooth homotopy inverse of ϕ
and let ψ̃ be its lift to Hn. Then by the previous lemma, it suffices to bound d(ϕ̃x, ϕ̃y) from below.
Apply the same lemma to ψ, we know

Ld(ϕ̃x, ϕ̃y) ≥ d(ψ̃ϕ̃x, ψ̃ϕ̃y).

So it suffices to show that the right-hand side is uniformly bounded away from d(x, y).
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Indeed, there is a compact ball B in Hn so that π1(M)B = Hn since M is compact. As both ψ̃
and ϕ̃ are π1-equivariant, we have

d(x, ψ̃ϕ̃x) = d(γx, γψ̃ϕ̃x) = d(γx, ψ̃ϕ̃γx)

for all γ ∈ π1(M). By choosing γ ∈ π1(M) so that γx ∈ B, by compactness and continuity, we
know

d(x, ψ̃ϕ̃x) ≤ C,
where C = supx∈B d(x, ψ̃ϕ̃x). Hence d(ψ̃ϕ̃x, ψ̃ϕ̃y) ≥ d(x, y)− 2C, and

d(ϕ̃x, ϕ̃y) ≥ 1

L
(d(x, y)− 2C).

This shows that ϕ̃ is a QI embedding, but clearly the above argument also shows that ψ̃ is a QI
inverse, and hence ϕ̃ is a quasi-isometry. �

4.3.2. Step (2). Since ϕ is a homotopy equivalence, we know ‖M‖1 = ‖N‖1 by Corollary 1.4. Recall
the fact that the regular ideal simplex is the unique ideal simplex that achieves that supremum vn =
sup∆ vol(∆) over all ideal n-simplices, and we have vol(M) = vn‖M‖1 by Gromov’s proportionality
1.36.

Intuitively, we can almost tile [M ] by ‖M‖1 copies of the regular ideal simplices, and as we map
them over by ϕ and straighten, we get a tiling of [N ] by ‖M‖1 = ‖N‖1 simplices, and so for volume
considerations, each simplex in the tiling of [N ] should also have the maximal volume, which requires
the simplex to be regular ideal simplex. This is the rough reason why ∂ϕ̃ must take the vertex set
of a regular ideal simplex to another such vertex set.

Lemma 4.28. ∂ϕ̃ takes the vertex set of a regular ideal simplex to another such vertex set.

Proof. Suppose there is a regular ideal simplex ∆r in Hn with vertex set V ⊂ ∂Hn such that the
ideal simplex ∆t with vertex set ∂ϕ̃(V ) is not regular. Then there is ε > 0 such that vol(∆t) <
vn − ε = vol(∆r)− 2ε.

Choose a genuine straight simplex ∆ approximating ∆r. Recall that by the smearing construction
in Section 1.7, we can represent [M ] as a cycle

∑
λici with each λi > 0,

∑
λi < ‖M‖1(1 + ε

vn
and

each ci the projection of some ∆′ with each vertex uniformly bounded away from ∆. Thus we may
choose ∆ close enough to ∆r so that vol(strϕci) < vn − ε for all i. Then [N ] =

∑
λistr(ϕci) and

vol(N) = 〈[N ], vol〉 =
∑

λivol(strϕci) ≤
∑

λi(vn−ε) < ‖M‖1(vn−ε)(1+
εvn
)
< ‖M‖1vn = ‖N‖1vn,

contradicting Gromov’s proportionality for N . �

4.3.3. Step (3). Note that any self-homeomorphism of ∂Hn acts on the set of (n + 1)-tuples of
distinct points in ∂Hn. Consider the subset V consisting of those (n + 1)-tuples that appear as
the vertex set of some regular ideal simplex. Then the boundary map of any hyperbolic isometry
preserves V. When n ≥ 3, these are the only homeomorphisms of ∂Hn with this property.

Proposition 4.29. If a self-homeomorphism h of ∂Hn preserves V, then there is a hyperbolic
isometry F : Hn → Hn such that ∂F = h.

Proof. First note that any two regular ideal simplices differ by a hyperbolic isometry, so Isom(Hn)
acts transitively on V. This can be seen by noting that any regular ideal simplex with one vertex at
∞ in the upper half space model has the remaining n vertices forming (the vertex set of) a regular
Euclidean (n− 1)-simplex, and the stabilizer of ∞ is the group of Euclidean similarities.

Thus up to composing h with ∂F for a hyperbolic isometry F , we may assume that h fixes each
vertex of a regular ideal simplex, and we aim to show that h is the identity. It suffices to show
that the fixed point set of h contains dense subset of ∂Hn. The basic observation is that, if h fixes
(v0, v1, · · · , vn) ∈ V, then it also fixes (v′0, v1, · · · , vn) ∈ V, where v′0 is the image of v0 under the
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hyperbolic reflection across the hyperplane passing through v1, · · · , vn. This is true because these
are the vertex sets of the only two regular ideal simplices containing v1, · · · , vn, which is the only
place that we need n ≥ 3. The density of the fixed point set of h follows from the fact hat the group
generated by reflections across the faces of a regular ideal simplex has limit set equal to ∂Hn. We
give a direct proof, following [BP92, Proposition C.5.1].

We explain the argument for n = 3, but the same works in higher dimensions. Suppose h fixes
an ideal regular simplex, which has one vertex v0 at ∞ in the upper half space model and the other
vertices v1, v2, v3 form an equilateral triangle ∆ on the Euclidean plane. By the observation above,
h fixes all vertices in the tiling of the Euclidean plane by reflections of ∆. In particular, h fixes v′1,
the reflection of v1 across [v2, v3]. Note that the hyperbolic reflection across the hyperplane through
v1, v2, v3 is the inversion with respect to the circumcircle of ∆, which takes v′1 to the midpoint of
[v2, v3]. It follows that all midpoints of the sides of ∆ are fixed, which divide ∆ into four equilateral
triangles whose side length is half of the original one. It follows that h fixes the vertex set of
another ideal regular simplex with one vertex being ∞ and the remaining three vertices forming
one of those smaller equilateral triangles. This means that we can keep subdividing the equilateral
triangles, whose tiling has denser vertex set. Taking the union of vertices in this process shows that
h fixes a dense set of the Euclidean plane and thus must be the identity map. �

Corollary 4.30. In the notation from the previous steps of the proof, ∂ϕ̃ = ∂F for some hyperbolic
isometry F : Hn → Hn. Moreover, F is π1-equivariant.

Proof. As we have shown in Lemma 4.28, ∂ϕ̃ has the property as in Proposition 4.29, hence the
existence of F . Since ∂F = ∂ϕ̃, which is π1-equivariant, we know F is also π1-equivariant, since a
hyperbolic isometry is determined by its boundary map. �

4.3.4. Step (4). Now we are ready to complete the proof.

Proof of Theorem 4.24. As shown above, ∂ϕ̃ = ∂F for some hyperbolic isometry F : M̃ → Ñ . The
π1-equivariance of F implies that it induces an isometry f : M → N . Moreover, there is a natural
homotopy H between ϕ̃ and F , where for each x ∈ M̃ , {H(x, t) | t ∈ [0, 1]} is the geodesic going
from ϕ̃(x) to F (x). As isometry preserves geodesics, the π1-equivariance of ϕ̃ and F implies that
the homotopy H is also π1-equivariant, and hence it descends to a homotopy between ϕ and f ,
which completes the proof. �

4.4. Remarks and consequences of Mostow’s rigidity.

Remark 4.31.
(1) There are a few other proofs of the Mostow rigidity, with Steps (2) and (3) worked out in

different ways. For instance, one can show that ∂ϕ̃ is quasi-conformal, where the distortion
is constant due to ergodicity of the action of π1(M) on ∂Hn. A more involved ergodicity (on
the double boundary) argument shows that the distortion is 1, and thus ∂ϕ̃ is conformal and
hence is the boundary map of some isometry.

(2) If we view M = Hn/Γ1 and N = Hn/Γ2 as quotients, where Γ1
∼= π1(M) and Γ2

∼= π1(N)
are lattices of Isom(Hn), then Mostow’s rigidity states that any abstract isomorphism ϕ :
Γ1 → Γ2 is realized as a conjugation by some F ∈ Isom(Hn).

(3) Prasad [Pra73] showed that the Mostow rigidity also holds for hyperbolic manifolds of finite
volume.

Let M = Hn/Γ be a closed hyperbolic manifold, where we view Γ as a lattice in Isom(Hn). Let
NΓ denote the normalizer of Γ, which consists of elements F ∈ Isom(Hn) such that FΓF−1 = Γ.
Let

Theorem 4.32. With the notation as above, if n ≥ 3, then the following groups are isomorphic
and finite:



GROMOV’S SIMPLICIAL NORM AND BOUNDED COHOMOLOGY 43

(1) the isometry group Isom(M),
(2) NΓ/Γ,
(3) the outer automorphism group Out(Γ),
(4) the mapping class group MCG(M) := Homeo(M)/Homeo0(M).

Proof. We first explain the isomorphism NΓ/Γ ∼= Isom(M). Each isomorphism f : M → M lifts
to an isometry F : Hn → Hn that is Γ-equivariant in the sense FγF−1 7→ ϕγ for all γ ∈ Γ for an
automorphism ϕ of Γ. This shows that conjugation by F inside Isom(Hn) preserves the subgroup
Γ, and hence F ∈ NΓ. Conversely, any F ∈ NΓ gives a Γ-equivariant isometry of Hn as above and
hence induces an isometry f : M → M . Moreover, f is the identity map if and only if F is a deck
transformation, i.e. F ∈ Γ. This gives an isomorphism NΓ/Γ→ Isom(M).

Now we show that NΓ/Γ ∼= Out(Γ). Clearly conjugation by any F ∈ NΓ defines an automorphism
on Γ, so we have a homomorphism h : NΓ → Out(Γ) and clearly Γ ⊂ kerh. The map is surjective
by Mostow’s rigidity, as any automorphism of Γ is realized by a homotopy equivalence, which is
homotopic to an isometry corresponding to some F ∈ NΓ. It remains to see that Γ = kerh. Suppose
conjugation by F ∈ NΓ agrees with conjugation by some γ ∈ Γ, then conjugation by γ−1F is the
identity map, i.e. γ−1F commutes with all elements of Γ. To see this, note that any centralizer
z of a loxodromic element γ fixes the endpoints of the axis of γ. As the limit set of Γ is ∂Hn by
compactness of M , if z commutes with all conjugates of γ in Γ then its fixed point contains a dense
set of ∂Hn, which implies z = id.

To see the isomorphism with the mapping class group, note that there are natural homomor-
phisms Isom(M) → Homeo(M) → MCG(M) and MCG(M) → Out(Γ). The composition is an
isomorphism as shown above, hence the map i : Isom(M) → MCG(M) is injective. It is also
surjective by Mostow’s rigidity and hence an isomorphism.

It remains to see that these groups are finite. The action of Isom(M) on M induces an action
on the frame bundle FM , which is compact since M is. The action on FM has no fixed point
since any isometry fixing a point on M is purely determined by its tangent map. So it suffices to
see that the action on FM has a discrete orbit. If not, then there is a sequence {Fn} of lifts of
isometries fn ∈ Isom(M) and a point x ∈ Hn so that for all ε, R > 0, Fn is ε close to the identity
on B(x,R) for all n large. Then if γ ∈ Γ has a fundamental domain of its axis in B(x,R), then
γ′ = FnγF

−1
n has the same translation length and almost the same axis. It follows that for some

p ∈ B(x,R), d(γ′−1γp, p) ≤ 2ε. Choosing ε less than the injectivity radius of M forces γ′−1γp = p.
Since the deck group π1(M) acts freely, this implies that γ′ = γ, i.e. Fn lies in the centralizer of
γ. By choosing R large so that this applies to finitely many γ’s that generate π1(M) ∼= Γ, we must
have Fn in the centralizer of Γ, which we have shown to be trivial. Thus Fn = id for n large, which
give a contradiction. Hence Isom(M) has discrete orbits on FM and thus it is finite. �

Note that when n = 2, it is still true that the mapping class group is isomorphic to the outer
automorphism of π1, and both are infinite, while the isometry group stays finite.

5. Actions on the circle and the bounded Euler class

The goal of this section is the introduce the (bounded) Euler class and explain how it characterizes
group actions on the circle, generalizing the role of the rotation number in the study of circle
homeomorphisms.

As before, let T = Homeo+(S1) and T̂ be group of lifts to R. Then we get a central extension

1→ Z→ T̂
π→ T → 1,(5.1)

where Z is the group of integer translations on R.
Central extensions of a group G by an abelian group A are in one-to-one correspondence to

cohomology classes in H2(G;A); see [Bro82, Chapter 4] for the general discussion. The associated
cohomology class is called the Euler class.
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We explain the construction in our case. Fix a set theoretic section s : T → T̂ , that is, for each
g ∈ T , we choose s(g) ∈ T̂ such that π(s(g)) = g. Using inhomogeneous coordinates, define a
2-cochain by setting e(g, h) := s(gh)−1s(g)s(h) for all g, h ∈ T . Note that πe(g, h) = (gh)−1gh = 1,
so e(g, h) ∈ kerπ = Z. Hence e is a Z-valued 2-cochain.

Lemma 5.1. e is a cocycle.

Proof. This is to check that (δe)(g, h, k) = 0 for all g, h, k ∈ T . In the calculation below, note that
the addition in Z is multiplication T̂ , and conjugation in T̂ acts trivially on Z as it is central. Then
by definition,

(δe)(g, h, k) = e(h, k)− e(gh, k) + e(g, hk)− e(g, h)

= s(hk)−1s(h)s(k)− s(ghk)−1s(gh)s(k) + s(ghk)−1s(g)s(hk)− s(gh)−1s(g)s(h)

= s(hk)−1s(h)s(k) + s(k)−1s(gh)−1s(ghk) + s(ghk)−1s(g)s(hk) + s(h)−1s(g)−1s(gh)

= s(hk)−1s(h)s(k) + s(k)−1s(gh)−1s(g)s(hk) + s(h)−1s(g)−1s(gh)

= s(hk)−1s(h)s(gh)−1s(g)s(hk) + s(h)−1s(g)−1s(gh)

= s(h)s(gh)−1s(g) + s(g)−1s(gh)s(h)−1

= 0

�

Definition 5.2 (Euler class). The Euler class eu ∈ H2(T ;Z) associated to the central extension
(5.1) is the cohomology class represented by the cocycle e.

Exercise 5.3. eu does not depend on the choice of the section s.

Proposition 5.4. The Euler class is bounded. More precisely, if we choose s(g) so that s(g)0 ∈ [0, 1)
for all g ∈ T , then e(g, h) ∈ {0, 1} for all g, h.

Proof. For this choice of s, we have 0 ≤ s(g)0 ≤ 1 and 0 ≤ s(h)0 ≤ s(h)s(g)0 < s(h)1 < 2, and thus
−1 < s(gh)−10 ≤ e(g, h)0 < s(gh)−12 < 2. As e(g, h) ∈ Z, so we must have e(g, h) ∈ {0, 1}. �

This shows that eu ∈ H2(T ;Z) is the image of a class euZ
b ∈ H2

b (T ;Z) (represented by the
bounded cocycle e above) under the comparison map.

Definition 5.5 (bounded Euler class). Let ρ : G→ Homeo+(S1) be a homomorphism that defines
a G action on S1. The bounded Euler class euZ

b (ρ) ∈ H2
b (G;Z) is defined as the pullback ρ∗euZ

b ,
where ρ∗ : H2

b (T ;Z)→ H2
b (G;Z).

The (ordinary) Euler class eu(ρ) is the image of euZ
b in H2(G;Z), or equivalently, eu(ρ) = ρ∗eu.

Denote the image of euZ
b (ρ) in H2

b (G;R) as euR
b (ρ). When the action ρ or the coefficient is

understood, we will omit them in the notation.

Changing the section by a uniformly bounded amount does not affect the bounded Euler class.
Here are some basic facts:

Lemma 5.6.
(1) eu(ρ) = 0 if and only if the action of G on S1 lifts to the universal cover R.
(2) There is an exact sequence

0→ Hom(G;S1)→ H2
b (G;Z)→ H2

b (G;R)

Proof.



GROMOV’S SIMPLICIAL NORM AND BOUNDED COHOMOLOGY 45

(1) If the action lifts to R, then one can choose a section s : T → T̂ so that s(ρ(g)) is the lifted
action of g ∈ G on R. It follows that e(ρ(g), ρ(h)) = 0 for all g, h, where e is the cocycle
representing eu associated to the section s. Thus eu(ρ) = ρ∗eu = 0.

Conversely, if eu(ρ) = 0, then the associated central extension of G is the trivial extension
Z×G, and we have a commutative diagram:

Z×G −−−−→ Gyρ̃ yρ
T̂

π−−−−→ T
So the restriction of ρ̃ to the Gfactor is the action of G on R lifting ρ.

(2) This is part of the long exact sequence associated to the short exact sequence of the coeffi-
cients 0→ Z→ R→ S1 → 0. The starting term is zero since H1

b (G;R) = 0.
�

Lemma 5.7. euZ
b (ρ) = 0 if and only if the action has a global fixed point.

Proof. If the action has a global fixed point p, then we can choose the lifts such that the preimage
p̃ of p in [0, 1) is fixed. Then it is straightforward to check that e = 0 for the cocycle associated to
this section. Hence euZ

b (ρ) = 0.
Conversely, suppose euZ

b (ρ) = 0. That is, there is a bounded function f : G → Z such that
e = δf , where e is the cocycle representing euZ

b (ρ) associated to the section where each lift satisfies
s(ρ(g))0 ∈ [0, 1). This means s(ρ(gh))−1s(ρ(g))s(ρ(h)) = f(g) + f(h) − f(gh) for all g, h ∈ G.
Define s′(ρ(g)) = s(ρ(g)) − f(g), then s′ is a group-theoretic section, lifting the G-action to R.
Since f is bounded, it follows that |s′(ρ(g))0| is uniformly bounded and hence r̃ot(s′(ρ(g))) = 0 for
all g. Thus s′(ρ(g)) has fixed points.

The goal is to show the existence of a common fixed point. It suffices to show that every finitely
generated subgroup of G has a fixed point: The fixed point set is Z-invariant, hence the fixed
points in [0, 1] for each finitely generated subgroup H is a compact set FH , which form a collection
of compact sets satisfying the finite intersection property, so their intersection is nonempty. For
finitely generated subgroups, we find fixed points by induction on the number of generators. We
have observed that the base case holds. The inductive step follows from the following claim.

Claim 5.8. If H and K are subgroups of T̂ such that the fixed point sets Fix(H), Fix(K) are
nonempty and disjoint. Then there is some g in the subgroup generated by H and K such that
r̃ot(g) > 0.

Proof. Note that if g(0) ≥ 1 then gn(0) ≥ n and r̃ot(g) ≥ 1 > 0, so it suffices to find such an element
g. Let C = sup g(0), where the supremum is taken over all g in the subgroup generated by H and
K. We show C = +∞. If not, by assumption, we may assume C /∈ Fix(H), i.e. there is some
h ∈ H such that C /∈ Fix(h). Since Fix(h) is closed, nonempty and Z-invariant, for some ε > 0 the
interval J = (C− ε, C] lies in some complementary interval I of Fix(h). By definition, there is some
g such that g(0) ∈ J ⊂ I. Up to replacing h by its inverse, the action of h on I is conjugate to a
translation on R and every forward orbit converges to the right endpoint of I, which is strictly to
the right of C. That is, hng(0) > hn(C− ε) > C for some n, but hng lies in the subgroup generated
by H and K, contracting the definition of C. �

�

More generally, the bounded Euler class euZ
b (ρ) determines the action ρ up to semi-conjugacy,

generalizing Poincaré’s Theorem 2.62.

Theorem 5.9 (Ghys). Two actions ρ1, ρ2 of G on S1 have euZ
b (ρ1) = euZ

b (ρ2) if and only if they
are equivalent up to semi-conjugacies.
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Proof. We give a brief sketch. Suppose euZ
b (ρ1) = euZ

b (ρ2), then eu(ρ1) = eu(ρ2). which determine
a central extension 1 → Z → Ĝ

π→ G → 1 with representations ρ̃i : Ĝ → T̂ lifting ρiπ, i =
1, 2. Similar to the proof of Poincaré’s Theorem 2.62, consider a function h : R → R by h̃(p) =

sup
g∈Ĝ ρ̃2(g)−1ρ̃1(g)p. Similar to Lemma 2.65, the map h̃ is monotone, commutes with integral

translations and has the property that h̃ρ̃1 = ρ̃2h̃. Thus it descends to a semi-conjugation h
between ρ1 and ρ2, except that h is continuous only after collapsing some jumps discontinuities.

Conversely, if two actions are semi-conjugate, one can directly check that the bounded Euler
classes agree. �

This generalizes Poincaré’s Theorem by restricting to Z actions.

Example 5.10. Any homeomorphism f ∈ T , defines an action ρ of Z on S1, where ρ(n) = fn for
all n ∈ Z. Since Z is amenable, we have H2

b (Z;R) = 0. Hence by the exact sequence in Lemma 5.6,
we have an isomorphism Hom(Z, S1) ∼= H2

b (Z;Z), so the bounded Euler class euZ
b (ρ) corresponds to

a homomorphism Z→ S1, which turns out to be the rotation number n 7→ rot(fn) = nrot(f), which
we explain below in a more general context.

Of course we can lift f to an element f̃ ∈ T̂ , resulting in a lifted action of Z on R. This reflects
the fact that eu(ρ) = 0 as H2(Z;Z) = H2(S1;Z) = 0.

As H2
b (G;R) is usually better understood compared to H2

b (G;Z), we can use the exact sequence
in Lemma 5.6 to obtain the following characterization of actions with euR

b (ρ) = 0.

Proposition 5.11. An action ρ of G on S1 has euR
b (ρ) = 0 if and only if the action is semi-

conjugate to an action by rigid rotations on S1. In this case, the rotation number rotρ : G → S1

given by g 7→ rot(ρ(g)) is a homomorphism.

Proof. By Lemma 5.6, the following sequence is exact:

0→ Hom(G,S1)
δ→ H2

b (G;Z)→ H2
b (G;R).

Hence the image euR
b (ρ) of euZ

b (ρ) in H2
b (G;R) vanishes if and only if euZ

b (ρ) = δϕ for some ϕ ∈
Hom(G,S1). As S1 acts on S1 by rigid rotations, the homomorphism ϕ defines an action ρ′ of G on
S1 by rigid rotations. By definition of the map δ : Hom(G,S1) → H2

b (G;Z), it is straightforward
to check that δϕ = euZ

b (ρ′). Hence euZ
b (ρ′) = euZ

b (ρ), i.e. the two actions are semi-conjugate by
Theorem 5.9. In this case, we have rot(ρ(g)) = rot(ρ′(g)) = ϕ(g), so rotρ = ϕ is a homomorphism.

�

In the case of amenable groups, this implies a theorem of Hirsch–Thurston.

Corollary 5.12 (Hirsch–Thurston). If G is amenable, then any action of G on S1 is semi-conjugate
to an action by rigid rotation. In particular, the rotation number is a homomorphism.

This allows us to classify finite subgroups of T = Homeo+(S1).

Proposition 5.13. Any finite subgroup of T = Homeo+(S1) is cyclic.

Proof. Let G ≤ T be finite. Then by amenability, the rotation number defines a homomorphism
rot : G → S1. This homomorphism must be faithful: If ρ(g) = 0, then g has a fixed point on S1,
which implies that g has infinite order unless g = id by Lemma 2.56. Hence G is a finite subgroup
of S1 and thus a cyclic group. �

Corollary 5.14. A group G cannot act faithfully on S1 if it has a finite subgroup that is not cyclic.

Example 5.15. The mapping class group Mod(S) of a closed surface S of genus at least one
cannot act faithfully on S1. This because Mod(S) has a subgroup isomorphic to the Klein group
K = Z/2×Z/2, which is not cyclic. To visualize this subgroup, note that the rotations by π around
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the x, y, z axis respectively in R3 together with the identity form a Klein group K, and S can be
embedded in a symmetric way around the origin in R3 so that K acts on S by orientation-preserving
homeomorphisms and descends isomorphically to Mod(S).

In contract, the mapping class group Mod(S, p) fixing a base point p ∈ S acts faithfully on S1.
One way to see this is to note that Mod(S, p) acts by automorphisms on the surface group π1(S, p)
and hence acts on its Gromov boundary, which is a circle since π1(S, p) is QI to H2.

There is also a cocycle representing 2 · euZ
b in terms of circular orders. For the given orientation

on S1, we write Or(x, y, z) = 1 if the triple of distinct points (x, y, z) is positively oriented and
Or(x, y, z) = −1 otherwise; For the degenerate cases we let Or(x, y, z) = 0. Fix a base point
p ∈ S1, in homogeneous coordinates, we define a 2-cochain via c(g, h, k) = Or(ρ(g)p, ρ(h)p, ρ(k)p)
for all g, h, k ∈ G. It is easy to check that c is a (bounded) cocycle, and thus defines bounded
cohomology class in H2(G;R) associated to the G action ρ on S1, which turns out to be twice the
bounded Euler class.

Proposition 5.16. We have [c] = 2euZ
b (ρ). In particular, the class does not depend on the choice

of p.

Corollary 5.17. ‖euR
b (ρ)‖∞ ≤ 1

2 .

This implies the Milnor–Wood inequality.

Theorem 5.18 (Milnor–Wood). Let S be a closed oriented surface and let ρ : π1(S) → T be an
action of π1(S) on S1. Then there is an inequality

|〈eu(ρ), [S]〉| ≤ −χ−(S)

Proof. We have

|〈eu(ρ), S〉| = |〈euR
b (ρ), [S]〉| ≤ ‖euR

b (ρ)‖∞ · ‖S‖1 ≤
1

2
· −2χ−(S) = −χ−(S),

where ‖euR
b (ρ)‖∞ = ‖ρ∗euR

b ‖∞ ≤ ‖euR
b ‖ ≤ 1/2 by functoriality. �

Remark 5.19. The Euler number 〈eu(ρ), [S]〉 varies continuously on the representation variety
Hom(π1(S),PSL2(R)), where to each representation ρ : π1(S) → PSL2(R) = Isom+(H2) we as-
sociate the action on the boundary S1 = ∂H2. Since 〈eu(ρ), [S]〉 takes integer values, it must be
constant on connected components. A theorem of Goldman shows that there is exactly one com-
ponent for each integer value of 〈eu(ρ), [S]〉. So by the Milnor–Wood inequality, the representation
variety has exactly 4g−3 components if S has genus g ≥ 2. Moreover, the components with maximal
|〈eu(ρ), [S]〉| correspond to the Teichmuller space, i.e. the space of discrete faithful representations.

For a countable group G, there is also a characterization of classes in H2
b (G;Z) realized as the

bounded Euler class for some action on S1.

Theorem 5.20 (Ghys). If G is countable, then α ∈ H2
b (G;Z) can be represented by cocycle taking

values in {0, 1} if and only if α = euZ
b (ρ) for some action ρ of G on S1.

Proof. We give a sketch; More details can be found in [Cal07, Chapter 2]. Clearly the bounded
Euler class has such a cocycle representative. Suppose α is represented by such cocycle c taking
values in {0, 1}. Then such a cocycle in homogeneous coordinate defines a G-invariant “circular
order” by setting Or(g, h, k) = (−1)c(g,h,k). For countable groups, a G-invariant “circular order” can
be realized as an action ρ of G on S1, which is analogous to the better known fact that any left-order
of a countable group G can be realized by a G action on R; See [Cal07, Theorem 2.46]. �
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